Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:25:38.746Z Has data issue: false hasContentIssue false

Nanoscale Focused Ion Beam Tomography of Single Bacterial Cells for Assessment of Antibiotic Effects

Published online by Cambridge University Press:  04 March 2014

Boyin Liu
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
Heidi H. Yu
Affiliation:
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Tuck Wah Ng
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
David L. Paterson
Affiliation:
Centre for Clinical Research, University of Queensland, Brisbane, QLD 4072, Australia
Tony Velkov
Affiliation:
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Jian Li*
Affiliation:
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
Jing Fu*
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
*
*Corresponding author. [email protected]; [email protected]
*Corresponding author. [email protected]; [email protected]
Get access

Abstract

Antibiotic resistance is a major risk to human health, and to provide valuable insights into mechanisms of resistance, innovative methods are needed to examine the cellular responses to antibiotic treatment. Focused ion beam tomography is proposed to image and assess the detailed three-dimensional (3D) ultrastructure of single bacterial cells. By iteratively removing slices of thickness in the order of 10 nm, high magnification 2D images can be acquired by scanning electron microscopy at single-digit nanometer resolution. In this study, Klebsiella pneumoniae was treated with polymyxin B, and 3D models of both cell envelope and cytoplasm regions containing the nucleoid and ribosomes were reconstructed. The 3D volume containing the nucleoid and ribosomes was significantly smaller, and the cell length along the longitudinal axis was extended by 40% in the treated cells, implying stress responses to the drug treatment. More than a 200% increase in protrusions per unit surface area on the cell envelope was observed in the curvature analysis after treatment. Experiments by conventional transmission electron microscopy and atomic force microscopy were also performed, followed by comparison and discussions. In conclusion, the proposed 3D imaging method and associated analysis provide a unique tool for the assessment of antibiotic effects on multidrug-resistant bacteria at nanometer resolution.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Abboodi, A., Fu, J., Doran, P.M. & Chan, P.P.Y. (2013). Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams. Biotechnol Bioeng 110(1), 318326.CrossRefGoogle ScholarPubMed
Al-Amoudi, A., Norlen, L.P. & Dubochet, J. (2004). Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J Struct Biol 148(1), 131135.Google Scholar
Alhede, M., Qvortrup, K., Liebrechts, R., Høiby, N., Givskov, M. & Bjarnsholt, T. (2012). Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol 65(2), 335342.Google Scholar
Boucher, H.W., Talbot, G.H., Bradley, J.S., Edwards, J.E., Gilbert, D., Rice, L.B., Scheld, M., Spellberg, B. & Bartlett, J. (2009). Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48(1), 112.Google Scholar
Bradford, P.A. (2001). Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4), 933951.Google Scholar
Chan, M. (2011). Antimicrobial resistance: No action today, no cure tomorrow. World Health Organization, http://www.who.int/dg/speeches/2011/WHD_20110407/en/.Google Scholar
Cornaglia, G., Giamarellou, H. & Rossolini, G.M. (2011). Metallo-β-lactamases: A last frontier for β-lactams? Lancet Infect Dis 11(5), 381393.Google Scholar
Davin-Regli, A., Bolla, J.M., James, C.E., Lavigne, J.P., Chevalier, J., Garnotel, E. & Molitor, A. (2008). Membrane permeability and regulation of drug influx and efflux in Enterobacterial pathogens. Curr Drug Targets 9(9), 750759.CrossRefGoogle ScholarPubMed
Elias, H., Hennig, A. & Schwartz, D.E. (1971). Stereology: Applications to biomedical research. Physiol Rev 51(1), 158200.CrossRefGoogle Scholar
Felts, R.L., Narayan, K., Estes, J.D., Shi, D., Trubey, C.M., Fu, J., Hartnell, L.M., Ruthel, G.T., Schneider, D.K. & Nagashima, K. (2010). 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci 107(30), 1333613341.Google Scholar
Friedmann, A., Hoess, A., Cismak, A. & Heilmann, A. (2011). Investigation of cell–substrate interactions by focused ion beam preparation and scanning electron microscopy. Acta Biomater 7(6), 24992507.CrossRefGoogle ScholarPubMed
Fu, J., Joshi, S.B. & Catchmark, J.M. (2008). A study of angular effects in focused ion beam milling of water ice. J Micromech Microeng 18(9), 095010.Google Scholar
Gilbert, D.N., Guidos, R.J., Boucher, H.W., Talbot, G.H., Spellberg, B., Jr.Edwards, J.E., Scheld, W.M., Bradley, J.S. & Bartlett, J.G. (2010). The 10× ${\tf="TNR"\char"A9}$ 20 initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50(8), 10811083.Google Scholar
Hayles, M.F., Matthijs de Winter, D., Schneijdenberg, C.T., Meeldijk, J.D., Luecken, U., Persoon, H., de Water, J., de Jong, F., Humbel, B.M. & Verkleij, A.J. (2010). The making of frozen-hydrated, vitreous lamellas from cells for cryo-electron microscopy. J Struct Biol 172(2), 180190.CrossRefGoogle ScholarPubMed
Heymann, J.A.W., Hayles, M., Gestmann, I., Giannuzzi, L.A., Lich, B. & Subramaniam, S. (2006). Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155, 6373.CrossRefGoogle ScholarPubMed
Heymann, J.A.W., Shi, D., Kim, S., Bliss, D., Milne, J.L.S. & Subramaniam, S. (2009). 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 166(1), 17.Google Scholar
Knott, G., Marchman, H., Wall, D. & Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28(12), 29592964.Google Scholar
Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., Irfan, S., Krishnan, P., Kumar, A.V., Maharjan, S., Mushtaq, S., Noorie, T., Paterson, D.L., Pearson, A., Perry, C., Pike, R., Rao, B., Ray, U., Sarma, J.B., Sharma, M., Sheridan, E., Thirunarayan, M.A., Turton, J., Upadhyay, S., Warner, M., Welfare, W., Livermore, D.M. & Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect Dis 10(9), 597602.Google Scholar
Lešer, V., Drobne, D., Pipan, Ž., Milani, M. & Tatti, F. (2009). Comparison of different preparation methods of biological samples for FIB milling and SEM investigation. J Microsc 233(2), 309319.Google Scholar
Madison, L.L. & Huisman, G.W. (1999). Metabolic engineering of poly(3-Hydroxyalkanoates): From DNA to plastic. Microbiol Mol Biol Rev 63(1), 2153.Google Scholar
Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. (2007). Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat Methods 4(3), 215217.Google Scholar
Matthijs De Winter, D.A., Schneijdenberg, C.T.W.M., Lebbink, M.N., Lich, B., Verkleij, A.J., Drury, M.R. & Humbel, B.M. (2009). Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J Microsc 233(3), 372383.Google Scholar
Mayhew, T. (1991). The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp Physiol 76(5), 639665.Google Scholar
McIntosh, R., Nicastro, D. & Mastronarde, D. (2005). New views of cells in 3D: An introduction to electron tomography. Trends Cell Biol 15(1), 4351.CrossRefGoogle ScholarPubMed
Milne, J.L. & Subramaniam, S. (2009). Cryo-electron tomography of bacteria: Progress, challenges and future prospects. Nat Rev Microbiol 7(9), 666675.Google Scholar
Murphy, G.E., Lowekamp, B.C., Zerfas, P.M., Chandler, R.J., Narasimha, R., Venditti, C.P. & Subramaniam, S. (2010). Ion-abrasion scanning electron microscopy reveals distorted liver mitochondrial morphology in murine methylmalonic acidemia. J Struct Biol 171, 125132.Google Scholar
Murphy, G.E., Narayan, K., Lowekamp, B.C., Hartnell, L.M., Heymann, J.A.W., Fu, J. & Subramaniam, S. (2011). Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J Struct Biol 176(3), 268278.Google Scholar
Nikaido, H. (2009). Multidrug resistance in bacteria. Annu Rev Biochem 78, 119146.Google Scholar
Pagès, J.-M., James, C.E. & Winterhalter, M. (2008). The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria. Nat Rev Microbiol 6(12), 893903.Google Scholar
Rigort, A., Bäuerlein, F.J., Leis, A., Gruska, M., Hoffmann, C., Laugks, T., Böhm, U., Eibauer, M., Gnaegi, H. & Baumeister, W. (2010). Micromachining tools and correlative approaches for cellular cryo-electron tomography. J Struct Biol 172(2), 169179.Google Scholar
Rigort, A., Bäuerlein, F.J., Villa, E., Eibauer, M., Laugks, T., Baumeister, W. & Plitzko, J.M. (2012). Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci 109(12), 44494454.Google Scholar
Rolain, J.M., Parola, P. & Cornaglia, G. (2010). New Delhi metallo-beta-lactamase (NDM-1): Towards a new pandemia? Clin Microbiol Infect 16(12), 16991701.Google Scholar
Sidjabat, H., Nimmo, G.R., Walsh, T.R., Binotto, E., Htin, A., Hayashi, Y., Li, J., Nation, R.L., George, N. & Paterson, D.L. (2011). Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi metallo-β-lactamase. Clin Infect Dis 52(4), 481484.Google Scholar
Talbot, G.H., Bradley, J., Edwards, J.E., Gilbert, D., Scheld, M. & Bartlett, J.G. (2006). Bad bugs need drugs: An update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin Infect Dis 42(5), 657668.Google Scholar
Tseng, A.A. (2005). Recent developments in nanofabrication using focused ion beams. Small 1(10), 924939.Google Scholar
Yong, D., Toleman, M.A., Giske, C.G., Cho, H.S., Sundman, K., Lee, K. & Walsh, T.R. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53(12), 50465054.Google Scholar
Zahller, J. & Stewart, P.S. (2002). Transmission electron microscopic study of antibiotic action on Klebsiella pneumoniae biofilm. Antimicrob Agents Chemother 46(8), 26792683.Google Scholar
Zhang, H., Obias, V., Gonyer, K. & Dennis, D. (1994). Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60(4), 11981205.Google Scholar