Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T02:33:46.545Z Has data issue: false hasContentIssue false

Nanoscale Chromatin Imaging and Analysis (nano-ChIA) Platform Bridges 4-D Chromatin Organization with Molecular Function

Published online by Cambridge University Press:  30 July 2020

Yue Li
Affiliation:
Northwestern University, Evanston, Illinois, United States
Adam Eshein
Affiliation:
Northwestern University, Evanston, Illinois, United States
Ranya Virk
Affiliation:
Northwestern University, Evanston, Illinois, United States
Aya Eid
Affiliation:
Northwestern University, Evanston, Illinois, United States
David VanDerway
Affiliation:
Northwestern University, Evanston, Illinois, United States
Jane Frederick
Affiliation:
Northwestern University, Evanston, Illinois, United States
Reiner Bleher
Affiliation:
Northwestern University, Evanston, Illinois, United States
Igal Szleifer
Affiliation:
Northwestern University, Evanston, Illinois, United States
Vinayak Dravid
Affiliation:
Northwestern University, Evanston, Illinois, United States
Vadim Backman
Affiliation:
Northwestern University, Evanston, Illinois, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Correlative and Multimodal Microscopy and Imaging of Physical, Environmental, and Biological Sciences
Copyright
Copyright © Microscopy Society of America 2020

References

Phillips-Cremins, J. E., et al. , Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 12811295 (2013).10.1016/j.cell.2013.04.053CrossRefGoogle ScholarPubMed
Clowney, E. J., et al. , Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151, 724737 (2012).10.1016/j.cell.2012.09.043CrossRefGoogle ScholarPubMed
Becker, J. S., et al. , Genomic and Proteomic Resolution of Heterochromatin and Its Restriction of Alternate Fate Genes. Mol Cell 68, 10231037 e1015 (2017).10.1016/j.molcel.2017.11.030CrossRefGoogle ScholarPubMed
Taberlay, P. C., et al. , Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res 26, 719731 (2016).10.1101/gr.201517.115CrossRefGoogle ScholarPubMed
Panikker, P. et al. , Restoring Tip60 HAT/HDAC2 Balance in the Neurodegenerative Brain Relieves Epigenetic Transcriptional Repression and Reinstates Cognition. J Neurosci 38, 45694583 (2018).10.1523/JNEUROSCI.2840-17.2018CrossRefGoogle ScholarPubMed
Li, Y. et al. , Quantifying Three-dimensional Chromatin Organization Utilizing Scanning Transmission Electron Microscopy: ChromSTEM. bioRxiv, 636209 (2019).10.1101/636209CrossRefGoogle Scholar
Cremer, M., Cremer, T., Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes, Chromosomes and Cancer 58, 427436 (2019).10.1002/gcc.22714CrossRefGoogle Scholar
Virk, R. K., et al. , Disordered chromatin packing regulates phenotypic plasticity. Science Advances 6, eaax6232 (2020).10.1126/sciadv.aax6232CrossRefGoogle ScholarPubMed
Darzacq, X. et al. , In vivo dynamics of RNA polymerase II transcription. Nature Structural &Amp; Molecular Biology 14, 796 (2007).10.1038/nsmb1280CrossRefGoogle ScholarPubMed
Nozaki, T. et al. , Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging. Mol Cell 67, 282293 e287 (2017).10.1016/j.molcel.2017.06.018CrossRefGoogle ScholarPubMed