Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-04T22:11:28.695Z Has data issue: false hasContentIssue false

A Method to Test the Performance of an Energy-Dispersive X-Ray Spectrometer (EDS)

Published online by Cambridge University Press:  17 July 2014

Vasile-Dan Hodoroaba*
Affiliation:
BAM Federal Institute for Materials Research and Testing, Division 6.8 Surface Analysis and Interfacial Chemistry, 12200 Berlin, Germany
Mathias Procop
Affiliation:
Institute for Scientific Instruments, Rudower Chaussee 29/31, 12489 Berlin, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

A test material for routine performance evaluation of energy-dispersive X-ray spectrometers (EDS) is presented. It consists of a synthetic, thick coating of C, Al, Mn, Cu, and Zr, in an elemental composition that provides interference-free characteristic X-ray lines of similar intensities at 10 kV scanning electron microscope voltage. The EDS energy resolution at the C-K, Mn-Lα, Cu-Lα, Al-K, Zr-Lα, and Mn-Kα lines, the calibration state of the energy scale, and the Mn-Lα/Mn-Kα intensity ratio as a measure for the low-energy detection efficiency are calculated by a dedicated software package from the 10 kV spectrum. Measurements at various input count rates and processor shaping times enable an estimation of the operation conditions for which the X-ray spectrum is not yet corrupted by pile-up events. Representative examples of EDS systems characterized with the test material and the related software are presented and discussed.

Type
Instrumentation and Techniques Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alig, R.C., Bloom, S. & Struck, C.W. (1980). Scattering by ionization and phonon emission in semiconductors. Phys Rev B 22, 55655582.CrossRefGoogle Scholar
Alvisi, M., Blome, M., Griepentrog, M., Hodoroaba, V.-D., Karduck, P., Mostert, M., Nacucchi, M., Procop, M., Rohde, M., Scholze, F., Statham, P., Terborg, R. & Thiot, J.F. (2006). The determination of the efficiency of energy dispersive X-ray spectrometers by a new reference material. Microsc Microanal 12, 406415.CrossRefGoogle ScholarPubMed
BAM Webshop, www.webshop.bam.de/ (Reference Materials, Test Materials). Accessed July 7, 2014.Google Scholar
Fano, U. (1947). Ionization yield of radiations. II. The fluctuations of the number of ions. Phys Rev 72, 2629.CrossRefGoogle Scholar
Fiori, C.E. & Newbury, D.E. (1978). Artifacts observed in energy-dispersive x-ray spectrometry in the SEM. In Scanning Electron Microscopy, Johari O. (Ed.), pp. 401422. Chicago: SEM, Inc.Google Scholar
Gauvin, R. (2012). What remains to be done to allow quantitative X-ray microanalysis performed with EDS to become a true characterization technique? Microsc Microanal 18, 915940.CrossRefGoogle ScholarPubMed
Heinrich, K.F.J. (1981). Electron Beam X-Ray Microanalysis. New York: Van Nostrand Reinhold. pp 271278.Google Scholar
Henke, B.L., Gullikson, E.M. & Davis, J.C. (1993). X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. Atomic Data Nucl Data 54, 181342.CrossRefGoogle Scholar
Hodoroaba, V.-D. & Procop, M. (2009). Performance check of a wavelength dispersive X-ray spectrometer (WDS) attached to the SEM. Microsc Microanal 15(Suppl 2), 11181119.CrossRefGoogle Scholar
ISO 15632 (2012). Microbeam Analysis—Selected Instrumental Performance Parameters for the Specification and Checking of Energy-Dispersive X-Ray Spectrometers for Use in Electron Probe Microanalysis. Geneve, Switzerland: ISO.Google Scholar
ISO 22029 (2012). Microbeam Analysis—EMSA/MAS Standard File Format for Spectral-Data Exchange. Geneve, Switzerland: ISO.Google Scholar
ISO/IEC 17025 (2005). General Requirements for the Competence of Testing and Calibration Laboratories. Geneve, Switzerland: ISO.Google Scholar
Kramers, H.A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Philos Mag 46, 836871.CrossRefGoogle Scholar
Mazziotta, M.N. (2008). Electron-hole pair creation energy and Fano factor temperature dependence in silicon. Nucl Instrum Meth A 584, 436439.CrossRefGoogle Scholar
McCarthy, J., Friel, J. & Camus, P. (2009). Impact of 40 years of technology advances on EDS system performance. Microsc Microanal 15, 484490.CrossRefGoogle ScholarPubMed
Mott, R. & Ritchie, N.W.M. (2010). Performance metrics for SDD/digital pulse processor combinations. Microsc Microanal 16(Suppl 2), 954955.CrossRefGoogle Scholar
Philibert, J. (1963). A method for calculating the absorption correction in electron probe microanalysis. In X-Ray Optics and X-Ray Microanalysis, Proceedings of the 3rd International Symposium on X-Ray Optics and Microanalysis, Pattee H.H., Cosslett V.E. & Engström A. (Eds.), pp. 379392. New York: Academic Press.Google Scholar
Procop, M. (1996). A simple procedure to check the spectral response of an EDX detector. Mikrochim Acta Suppl 13, 473477.Google Scholar
Procop, M. (2000). EDXTOOLS—computer programmes for the determination of critical EDX spectrometer parameters. Mikrochim Acta 132, 527530.CrossRefGoogle Scholar
Procop, M. & Hodoroaba, V.-D. (2009). A test material and a quick procedure for the performance check of X-ray spectrometers attached to the SEM. Microsc Microanal 15(Suppl 2), 11201121.CrossRefGoogle Scholar
Ritchie, N.W.M. (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15, 454468.CrossRefGoogle ScholarPubMed
Scholze, F. & Procop, M. (2001). Measurement of detection efficiency and response functions for an Si(Li) X-ray spectrometer in the range 0.1–5 keV. X-Ray Spectrom 30, 6976.CrossRefGoogle Scholar
Statham, P.J. (1999). Measuring performance of energy-dispersive X-ray systems. Microsc Microanal 4, 605615.CrossRefGoogle Scholar
Statham, P.J. (2009). Prospects for single standard quantitative analysis with SDD. Microsc Microanal 15(Suppl 2), 528529.CrossRefGoogle Scholar
Statham, P.J. (2010). Improved efficiency characterisation for large solid angle SDD detectors. Microsc Microanal 16(Suppl 2), 13041305.CrossRefGoogle Scholar
Watanabe, M. (2010). XUtils Ver. 1: a set of Gatan DigitalMicrograph Plug-ins for characterization of XEDS-detector performance parameters in an AEM. Microsc Microanal 16(Suppl 2), 260261.CrossRefGoogle Scholar
Zschornack, G. (1989). Atomdaten für die Röntgenspektralanalyse. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie.Google Scholar