Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T22:16:36.806Z Has data issue: false hasContentIssue false

Measuring Interatomic Bonding and Charge Redistributions in Defects by Combining 4D-STEM and STEM Multislice Simulations

Published online by Cambridge University Press:  30 July 2020

Damien Heimes
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany
Jürgen Belz
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany
Andreas Beyer
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany
Kerstin Volz
Affiliation:
Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, Marburg, Hessen, Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Müller, Knut, et al. “Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.” Nature communications 5.1 (2014): 18.10.1038/ncomms6653CrossRefGoogle ScholarPubMed
Müller-Caspary, Knut, et al. “Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy.” Ultramicroscopy 178 (2017): 6280.10.1016/j.ultramic.2016.05.004CrossRefGoogle ScholarPubMed
Shibata, Naoya, et al. “Electric field imaging of single atoms.” Nature communications 8.1 (2017): 17.10.1038/ncomms15631CrossRefGoogle ScholarPubMed
Gao, Wenpei, et al. “Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy.” Nature 575.7783 (2019): 480484.10.1038/s41586-019-1649-6CrossRefGoogle ScholarPubMed
Kirkland, Earl J. Advanced computing in electron microscopy. Springer Science & Business Media, 2010.10.1007/978-1-4419-6533-2CrossRefGoogle Scholar
Oelerich, Jan Oliver, et al. “STEMsalabim: a high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.” Ultramicroscopy 177 (2017): 9196.10.1016/j.ultramic.2017.03.010CrossRefGoogle ScholarPubMed
Beyer, A., et al. “Atomic structure of (110) anti-phase boundaries in GaP on Si (001).” Applied Physics Letters 103.3 (2013): 032107.10.1063/1.4815985CrossRefGoogle Scholar
Susi, Toma, et al. “Efficient first principles simulation of electron scattering factors for transmission electron microscopy.” Ultramicroscopy 197 (2019): 1622.10.1016/j.ultramic.2018.11.002CrossRefGoogle ScholarPubMed
Enkovaara, J. E., et al. “Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method.” Journal of Physics: Condensed Matter 22.25 (2010): 253202.Google ScholarPubMed