Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T12:25:45.316Z Has data issue: false hasContentIssue false

High Contrast Magnetic and Nonmagnetic Sample Current Microscopy for Bulk and Transparent Samples Using Soft X-Rays

Published online by Cambridge University Press:  25 August 2011

Daniela Nolle*
Affiliation:
MPI for Metals Research, Department of Modern Magnetic Materials, Heisenbergstraße 3, 70569 Stuttgart, Germany
Markus Weigand
Affiliation:
MPI for Metals Research, Department of Modern Magnetic Materials, Heisenbergstraße 3, 70569 Stuttgart, Germany
Gisela Schütz
Affiliation:
MPI for Metals Research, Department of Modern Magnetic Materials, Heisenbergstraße 3, 70569 Stuttgart, Germany
Eberhard Goering
Affiliation:
MPI for Metals Research, Department of Modern Magnetic Materials, Heisenbergstraße 3, 70569 Stuttgart, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The soft X-ray energy range provides important detection capabilities for a wide range of material systems, e.g., the K-edge behavior of biological materials or magnetic contrast imaging at the L2,3- and M4,5-edges, respectively, using the X-ray magnetic circular dichroism effect. The need for thinned samples due to the short penetration depth of soft X-rays is a limiting factor for microscopic imaging in transmission microscopy. In contrast, the more surface sensitive photoelectron emission microscopy allows the X-ray microscopic investigation of nontransparent bulk samples, but only small magnetic fields and very smooth surfaces are possible. As both high magnetic fields as well as bulk samples are important for magnetic imaging, we present total electron yield (TEY) microscopy results using the total sample current detection performed at the new ultra high vacuum scanning microscope “MAXYMUS” at HZB/BESSY II. We compare synchronous measurements in TEY and transmission mode to demonstrate the capabilities of TEY microscopy. Pictures and spectra with high absorption contrast and three-dimensional-like edge enhancement are observed as known for scanning electron microscopy. This unveils details on smallest length scales of the surface morphology. Furthermore, surface sensitive in- and out-of-plane magnetic TEY measurements at nontransparent samples are shown.

Type
Equipment/Techniques Development
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbate, M., Goedkoop, J.B., Degroot, F.M.F., Grioni, M., Fuggle, J.C., Hofmann, S., Petersen, H. & Sacchi, M. (1992). Probing depth of soft X-ray absorption spectroscopy measured in total-electron-yield mode. Surf Interface Anal 18(1), 6569.CrossRefGoogle Scholar
Ade, H. & Stoll, H. (2009). Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nat Mater 8(4), 281290.CrossRefGoogle ScholarPubMed
Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J. & Williams, S. (1992). Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 258(5084), 972975.CrossRefGoogle ScholarPubMed
Attwood, D. (1999). Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications, Chaps. 1–9. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Carra, P., Thole, B.T., Altarelli, M. & Wang, X.D. (1993). X-ray circular-dichroism and local magnetic fields. Phys Rev Lett 70(5), 694697.CrossRefGoogle ScholarPubMed
Chao, W.L., Anderson, E.H., Harteneck, B.D., Liddle, J.A. & Attwood, D.T. (2007). Soft X-ray zone plate microscopy to 10 nm resolution with XM-1 at the ALS. In Synchrotron Radiation Instrumentation, Parts 1 and 2, Choi, J.Y. & Rah, S. (Eds.), pp. 12691273. Melville, NY: American Institute of Physics.Google Scholar
Chao, W.L., Harteneck, B.D., Liddle, J.A., Anderson, E.H. & Attwood, D.T. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435(7046), 12101213.CrossRefGoogle Scholar
Chen, C.T., Idzerda, Y.U., Lin, H.J., Smith, N.V., Meigs, G., Chaban, E., Ho, G.H., Pellegrin, E. & Sette, F. (1995). Experimental confirmation of the X-ray magnetic circular-dichroism sum-rules for iron and cobalt. Phys Rev Lett 75(1), 152155.CrossRefGoogle ScholarPubMed
Durr, H.A., Eimuller, T., Elmers, H.J., Eisebitt, S., Farle, M., Kuch, W., Matthes, F., Martins, M., Mertins, H.C., Oppeneer, P.M., Plucinski, L., Schneider, C.M., Wende, H., Wurth, W. & Zabel, H. (2009). A closer look into magnetism: Opportunities with synchrotron radiation. IEEE T Magn 45(1), 1557.CrossRefGoogle Scholar
Eisebitt, S., Luning, J., Schlotter, W.F., Lorgen, M., Hellwig, O., Eberhardt, W. & Stohr, J. (2004). Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432(7019), 885888.CrossRefGoogle ScholarPubMed
Figuerola, A., Fiore, A., DiCorato, R., Falqui, A., Giannini, C., Micotti, E., Lascialfari, A., Corti, M., Cingolani, R., Pellegrino, T., Cozzoli, P.D. & Manna, L. (2008). One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. J Am Chem Soc 130(4), 14771487.CrossRefGoogle ScholarPubMed
Fischer, P., Eimuller, T., Schutz, G., Guttmann, P., Schmahl, G. & Bayreuther, G. (2000). Imaging magnetic structures with a transmission X-ray microscope. AIP Conf Proc 507, 205212.CrossRefGoogle Scholar
Freeman, M.R. & Choi, B.C. (2001). Advances in magnetic microscopy. Science 294(5546), 14841488.CrossRefGoogle ScholarPubMed
Goering, E., Gold, S., Lafkioti, M. & Schütz, G. (2006). Vanishing Fe 3D orbital moments in single-crystalline magnetite. Europhys Lett 73(1), 97103.CrossRefGoogle Scholar
Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R. & Riess, H. (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hem 43(1), 3356.CrossRefGoogle ScholarPubMed
Hub, C., Wenzel, S., Raabe, J., Ade, H. & Fink, R.H. (2010). Surface sensitivity in scanning transmission X-ray microspectroscopy using secondary electron detection. Rev Sci Instrum 81(3), 033704-1–5.CrossRefGoogle ScholarPubMed
Kirz, J., Jacobsen, C. & Howells, M. (1995). Soft-X-ray microscopes and their biological applications. Q Rev Biophys 28(1), 33130.CrossRefGoogle ScholarPubMed
Kirz, J. & Rarback, H. (1985). Soft-X-ray microscopes. Rev Sci Instrum 56(1), 113.CrossRefGoogle Scholar
Ma, D.L., Guan, J.W., Normandin, F., Denommee, S., Enright, G., Veres, T. & Simard, B. (2006). Multifunctional nano-architecture for biomedical applications. Chem Mater 18(7), 19201927.CrossRefGoogle Scholar
Marchesini, S., Boutet, S., Sakdinawat, A.E., Bogan, M.J., Bajt, S., Barty, A., Chapman, H.N., Frank, M., Hau-Riege, S.P., Szoke, A., Cui, C., Shapiro, D.A., Howells, M.R., Spence, J.C.H., Shaevitz, J.W., Lee, J.Y., Hajdu, J. & Seibert, M.M. (2008). Massively parallel X-ray holography. Nat Photon 2(9), 560563.CrossRefGoogle Scholar
Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S. & Fullerton, E.E. (2002). Magnetic recording: Advancing into the future. J Phys D: Appl Phys 35(19), R157R167.CrossRefGoogle Scholar
Nakajima, R., Stöhr, J. & Idzerda, Y.U. (1999). Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys Rev B 59(9), 6421.CrossRefGoogle Scholar
Nolle, D., Goering, E., Tietze, T., Schutz, G., Figuerola, A. & Manna, L. (2009). Structural and magnetic deconvolution of FePt/FeOx-nanoparticles using X-ray magnetic circular dichroism. New J Phys 11, 033034.CrossRefGoogle Scholar
Pouliquen, D., Perdrisot, R., Ermias, A., Akoka, S., Jallet, P. & Le Jeune, J.J. (1989). Superparamagnetic iron oxide nanoparticles as a liver MRI contrast agent: Contribution of microencapsulation to improved biodistribution. Magn Reson Imaging 7(6), 619627.CrossRefGoogle ScholarPubMed
Renshaw, P.F., Owen, C.S., McLaughlin, A.C., Frey, T.G. & Leigh, J.S. (1986). Ferromagnetic contrast agents: A new approach. Magn Reson Med 3(2), 217225.CrossRefGoogle ScholarPubMed
Rosi, N.L. & Mirkin, C.A. (2005). Nanostructures in biodiagnostics. Chem Rev 105(4), 15471562.CrossRefGoogle ScholarPubMed
Schmahl, G., Rudolph, D., Niemann, B., Guttmann, P., Thieme, J. & Schneider, G. (1996). X-ray microscopy. Naturwissenschaften 83(2), 6170.CrossRefGoogle ScholarPubMed
Schütz, G., Goering, E. & Stoll, H. (2007). Synchrotron radiation techniques based on X-ray magnetic circular dichroism. In Handbook of Magnetism and Advanced Magnetic Materials, Kronmüller, H. & Parkin, S. (Eds.), vol 3, pp. 13111390. Berlin: Wiley Verlag.Google Scholar
Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R. & Materlik, G. (1987). Absorption of circularly polarized X-rays in iron. Phys Rev Lett 58(7), 737740.CrossRefGoogle ScholarPubMed
Stöhr, J. & Siegmann, H.C. (2006). Magnetism—From Fundamentals to Nanoscale Dynamics. Berlin: Springer.Google Scholar
Suh, W.H., Suslick, K.S., Stucky, G.D. & Suh, Y.H. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87(3), 133170.CrossRefGoogle ScholarPubMed
Thole, B.T., Carra, P., Sette, F. & Vanderlaan, G. (1992). X-ray circular-dichroism as a probe of orbital magnetization. Phys Rev Lett 68(12), 19431946.CrossRefGoogle ScholarPubMed
Tiefenauer, L.X., Tschirky, A., Kühne, G. & Andres, R.Y. (1996). In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14(4), 391402.CrossRefGoogle ScholarPubMed
Unguris, J. (2001). Scanning electron microscopy with polarization analysis (SEMPA) and its applications. In Magnetic Imaging and Its Applications to Materials, De Graef, M. & Zhu, Y. (Eds.), vol. 36, Chap. 6. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Van Waeyenberge, B., Puzic, A., Stoll, H., Chou, K.W., Tyliszczak, T., Hertel, R., Fahnle, M., Bruckl, H., Rott, K., Reiss, G., Neudecker, I., Weiss, D., Back, C.H. & Schutz, G. (2006). Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444(7118), 461464.CrossRefGoogle ScholarPubMed
Wang, K.L. (2002). Issues of nanoelectronics: A possible roadmap. J Nanosci Nanotechnol 2(3-4), 235266.CrossRefGoogle ScholarPubMed
Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R. & Schlag, P.M. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncology 3(8), 487497.CrossRefGoogle ScholarPubMed