Article contents
Grains and Sub Grains Identification in AISI 430 Stainless Steelwith Atomic and Magnetic Force Microscopies
Published online by Cambridge University Press: 30 December 2005
Extract
Cold rolled sheets of AISI 430 ferritic stainless steel have been widely used in kitchen utensils, ornamental articles, among other products due to their corrosion resistance and good formability. However, a localized increase of the surface roughness, known as ridging, develops during ferritic stainless steel forming [1]. The ridging is caused by anisotropic plastic flow of the material containing alternated bands of different crystallographic textures. These bands, or grain colonies, are formed during hot rolling fabrication step. During this step, the deformed grains can undergo dynamic recrystallization and/or recovery. In the regions where recovery takes place these texture bands are formed. In order to study ridging, it is necessary to identify the recovered regions (regions containing sub grains with nearly the same crystal orientation) and recrystallized regions (regions containing grains with different crystal orientations). Two well established techniques are applied to the characterization of recrystallized and recovered grains: the optical microscopy with polarized light, normally done in samples prepared with colored etching, and the electron backscatter diffraction (EBSD). In this work, atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to study the recrystallization and the recovery of the deformed specimens.
- Type
- Other
- Information
- Copyright
- © 2005 Microscopy Society of America
- 1
- Cited by