Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T16:51:30.368Z Has data issue: false hasContentIssue false

Embedding Heterogeneous Cryo-EM Data with 3D Principal Component Analysis and Variational Autoencoders

Published online by Cambridge University Press:  30 July 2020

Dimitry Tegunov*
Affiliation:
Max Planck Institute for Biophysical Chemistry, Goettingen, Niedersachsen, Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Image Processing Developments in Cryo-EM
Copyright
Copyright © Microscopy Society of America 2020

References

Rodnina, M.V. and Wintermeyer, W., The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation. Biochem Soc Trans, 2011. 39(2): p. 658-62.10.1042/BST0390658CrossRefGoogle ScholarPubMed
Scheres, S.H., A Bayesian View on Cryo-EM Structure Determination, in J Mol Biol. 2012. p. 406-18.10.1016/j.jmb.2011.11.010CrossRefGoogle ScholarPubMed
Hofmann, S., et al. , Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature, 2019. 571(7766): p. 580-583.10.1038/s41586-019-1391-0CrossRefGoogle ScholarPubMed
Schilbach, S., et al. ., Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature, 2017. 551(7679): p. 204-209.10.1038/nature24282CrossRefGoogle ScholarPubMed
Nakane, T., et al. ., Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife, 2018. 7.10.7554/eLife.36861CrossRefGoogle ScholarPubMed
Tagare, H.D., et al. ., Directly reconstructing principal components of heterogeneous particles from cryo-EM images. J Struct Biol, 2015. 191(2): p. 245-62.10.1016/j.jsb.2015.05.007CrossRefGoogle ScholarPubMed
Kingma, D.P. and Welling, M., Auto-Encoding Variational Bayes. 2013.Google Scholar