No CrossRef data available.
Article contents
Embedding Heterogeneous Cryo-EM Data with 3D Principal Component Analysis and Variational Autoencoders
Published online by Cambridge University Press: 30 July 2020
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Image Processing Developments in Cryo-EM
- Information
- Copyright
- Copyright © Microscopy Society of America 2020
References
Rodnina, M.V. and Wintermeyer, W., The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation. Biochem Soc Trans, 2011. 39(2): p. 658-62.10.1042/BST0390658CrossRefGoogle ScholarPubMed
Scheres, S.H., A Bayesian View on Cryo-EM Structure Determination, in J Mol Biol. 2012. p. 406-18.10.1016/j.jmb.2011.11.010CrossRefGoogle ScholarPubMed
Hofmann, S., et al. , Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature, 2019. 571(7766): p. 580-583.10.1038/s41586-019-1391-0CrossRefGoogle ScholarPubMed
Schilbach, S., et al. ., Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature, 2017. 551(7679): p. 204-209.10.1038/nature24282CrossRefGoogle ScholarPubMed
Nakane, T., et al. ., Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife, 2018. 7.10.7554/eLife.36861CrossRefGoogle ScholarPubMed
Tagare, H.D., et al. ., Directly reconstructing principal components of heterogeneous particles from cryo-EM images. J Struct Biol, 2015. 191(2): p. 245-62.10.1016/j.jsb.2015.05.007CrossRefGoogle ScholarPubMed
You have
Access