Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T04:52:48.194Z Has data issue: false hasContentIssue false

Effect of 4 Wt% Magnesium on The Micro-hardness Of Aluminum Alloy Synthesized by Mechanical Milling

Published online by Cambridge University Press:  30 July 2020

Ismael Santos-Ramos
Affiliation:
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan de Ocampo, Mexico
Luis Bernardo López-Sosa
Affiliation:
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan de Ocampo, Mexico
J. Zárate-Medina
Affiliation:
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan de Ocampo, Mexico
Gerardo Rosas
Affiliation:
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan de Ocampo, Mexico

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Collaborative Analysis Using Atom Probe Tomography Including TEM/APT Characterization of Metal Alloys and Other Material Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Zhang, Z., Couture, A., & Luo, A. (1998). An investigation of the properties of Mg-Zn-Al alloys. Scripta Materialia, 39(1).10.1016/S1359-6462(98)00122-5CrossRefGoogle Scholar
Jiang, H. J., Liu, C. Y., Ma, Z. Y., Zhang, X., Yu, L., Ma, M. Z., & Liu, R. P. (2017). Fabrication of Al–35Zn alloys with excellent damping capacity and mechanical properties. Journal of Alloys and Compounds, 722, 138-144.10.1016/j.jallcom.2017.06.091CrossRefGoogle Scholar
González, I., Barba-Brioso, C., Campos, P., Romero, A., & Galán, E. (2016). Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material. Journal of environmental management, 180, 190-196.10.1016/j.jenvman.2016.05.039CrossRefGoogle ScholarPubMed
Hou, L., Li, B., Wu, R., Cui, L., Ji, P., Long, R., & Sun, , B. (2017). Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy. Journal of materials science & technology, 33(9), 947-953.10.1016/j.jmst.2017.02.002CrossRefGoogle Scholar
Nouri, Z., & Sedighi, M. (2018). Effect of powder thixoforging process on microstructural and mechanical properties of recycled 520 aluminum alloy. Journal of Mechanical Science and Technology, 32(5), 2003-2009.10.1007/s12206-018-0408-1CrossRefGoogle Scholar
Esquivel, J., Murdoch, H. A., Darling, K. A., & Gupta, R. K. (2018). Excellent corrosion resistance and hardness in Al alloys by extended solid solubility and nanocrystalline structure. Materials Research Letters, 6(1), 79-83.10.1080/21663831.2017.1396262CrossRefGoogle Scholar
Gupta, R. K., Murty, B. S., & Birbilis, N. (2017). High-energy ball milling parameters in production of nanocrystalline Al alloys. In An Overview of High-energy Ball Milled Nanocrystalline Aluminum Alloys (pp. 7-28). Springer, Cham.10.1007/978-3-319-57031-0_2CrossRefGoogle Scholar
Asgharzadeh, H. (2016). Sintering behavior of nanocrystalline Al6063 powders prepared by high-energy mechanical milling. Transactions of the Indian Institute of Metals, 69(7), 1359-1368.10.1007/s12666-015-0693-7CrossRefGoogle Scholar
Khiavi, S. G., & Emadoddin, E. (2018). Microhardness distribution and finite element method analysis of Al 5452 alloy processed by unconstrained high pressure torsion. Journal of materials research and technology, 7(4), 410-418.10.1016/j.jmrt.2017.04.009CrossRefGoogle Scholar