Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-16T02:32:26.373Z Has data issue: false hasContentIssue false

Atomic Structure and Dynamics of Defects and Grain Boundaries in 2D Pd2Se3 Monolayers

Published online by Cambridge University Press:  30 July 2020

Jun Chen
Affiliation:
University of Oxford, Oxford, England, United Kingdom
Gyeonghee Ryu
Affiliation:
University of Oxford, Oxford, England, United Kingdom
Jamie Warner
Affiliation:
University of Texas at Austin, Austin, Texas, United States

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Structural imperfections of 2D crystals such as point vacancies and grain boundaries (GBs) have considerable impacts on their chemical-physical properties. Here we study the atomic structure and dynamics of defects and GBs in monolayer Pd2Se3 using annular dark field scanning transmission electron microscopy (ADF-STEM). The Pd2Se3 monolayers are reproducibly created by thermally induced phase transformation of few-layered PdSe2 films in an in-situ heating holder in the TEM to promote Se loss. Diverse point vacancies, one-dimensional (1D) defects, GBs and defect ring complexes are directly observed in monolayer Pd2Se3, which show a series of dynamics triggered by electron beam. High mobility of vacancies leads to self-healing of point vacancies by migration to the edge and subsequent edge etching under the beam. Specific defects are stabilized by Se–Se bonds, which shift in a staggered way to buffer strain, forming a wave-like 1D defect. Bond rotations are also observed and play an important role in defect and GB dynamics in Pd2Se3 during vacancy production. The GBs form in a meandering pathway and migrate by a sequence of Se–Se bond rotations without large scale vacancy formation. In the GB corners and tilted GBs, other highly symmetric vacancy defects also occur to adapt to the orientation change. These results give atomic level insights into the defects and GBs in Pd2Se3 2D monolayers.

Type
New Frontiers in Electron Microscopy of Two-dimensional Materials
Copyright
Copyright © Microscopy Society of America 2020

References

Liu, Z., Lau, S.P., Yan, F., Chem. Soc. Rev. 2015 , 44, 56385679.10.1039/C4CS00455HCrossRefGoogle Scholar
Tan, C., Cao, X., Wu, X.-J., He, Q., Yang, J., Zhang, X., Chen, J., Zhao, W., Han, S., Nam, G.-H., Chem. Rev. 2017 , 117, 62256331.10.1021/acs.chemrev.6b00558CrossRefGoogle Scholar
Lee, J.S., Choi, S.H., Yun, S.J., Kim, Y.I., Boandoh, S., Park, J.-H., Shin, B.G., Ko, H., Lee, S.H., Kim, Y.-M., Lee, Y.H., Kim, K.K., Kim, S.M., Science 2018 , 362, 817821.10.1126/science.aau2132CrossRefGoogle Scholar
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V., Kis, A., Nat. Rev. Mater. 2017 , 2, 17033.10.1038/natrevmats.2017.33CrossRefGoogle Scholar
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Nat. Nanotechnol. 2012 , 7, 699–172.10.1038/nnano.2012.193CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, i.V., Kis, A., Nat. Nanotechnol. 2011 , 6, 147150.10.1038/nnano.2010.279CrossRefGoogle Scholar
Duan, X., Wang, C., Pan, A., Yu, R., Duan, X., Chem. Soc. Rev. 2015 , 44, 88598876.10.1039/C5CS00507HCrossRefGoogle Scholar
Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M., Nat. Mater. 2014 , 13, 11281134.10.1038/nmat4080CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Phys. Rev. Lett. 2010 , 105, 136805.10.1103/PhysRevLett.105.136805CrossRefGoogle Scholar
Lin, J., Zuluaga, S., Yu, P., Liu, Z., Pantelides, S.T., Suenaga, K., Phys. Rev. Lett. 2017 , 119, 016101.10.1103/PhysRevLett.119.016101CrossRefGoogle Scholar
Sebastian, Z., Junhao, L., Kazu, S., Sokrates, T.P., 2D Mater. 2018 , 5, 035025.Google Scholar
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.-C., Nano Lett. 2013 , 13, 26152622.10.1021/nl4007479CrossRefGoogle Scholar
Wang, S., Robertson, A., Warner, J.H., Chem. Soc. Rev. 2018 , 47, 67646794.10.1039/C8CS00236CCrossRefGoogle Scholar
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.H., Heinz, T.F., Reichman, D.R., Muller, D.A., Hone, J.C., Nat. Mater. 2013 , 12, 554561.10.1038/nmat3633CrossRefGoogle Scholar
Barja, S., Wickenburg, S., Liu, Z.-F., Zhang, Y., Ryu, H., Ugeda, Miguel M., Hussain, Z., Shen, Z.-X., Mo, S.-K., Wong, E., Salmeron, Miquel B., Wang, F., Crommie, M.F., Ogletree, D.F., Neaton, Jeffrey B., Weber-Bargioni, A., Nat. Phys. 2016 , 12, 751756.10.1038/nphys3730CrossRefGoogle Scholar
Huang, Y.L., Chen, Y., Zhang, W., Quek, S.Y., Chen, C.-H., Li, L.-J., Hsu, W.-T., Chang, W.-H., Zheng, Y.J., Chen, W., Wee, A.T.S., Nat. Commun. 2015 , 6, 6298.10.1038/ncomms7298CrossRefGoogle Scholar