Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T12:14:04.789Z Has data issue: false hasContentIssue false

Atomic Force Microscopy of Mechanically Trapped Bacterial Cells

Published online by Cambridge University Press:  18 January 2007

Antonio Méndez-Vilas
Affiliation:
Department of Physics, University of Extremadura, Avda de Elvas s/n, 06071 Badajoz, Spain
Amparo M. Gallardo-Moreno
Affiliation:
Department of Physics, University of Extremadura, Avda de Elvas s/n, 06071 Badajoz, Spain
M. Luisa González-Martín
Affiliation:
Department of Physics, University of Extremadura, Avda de Elvas s/n, 06071 Badajoz, Spain
Get access

Abstract

This article presents a study on the influence of the protocol used for immobilization of bacterial cells onto surfaces by mechanically trapping them into a filter. In this sense, the surface and structure of trapped cells are analyzed. Bacteria can be present solely or with extracellular polymeric substances (EPS). To test the behavior of the EPS layer duing the filtering process, different strains of a well-known EPS-producer bacteria (Staphylococcus epidermidis), which produce an extracellular matrix clearly visible in AFM images, have been used. Results show that this immobilization method can cause severe structural and mechanical deformation to the cell membrane. This altered mechanical state may possibly influence the parameters derived from AFM force curves (which are micro/nano-mechanical tests). Also, our results suggest that the EPS layer might move during the filtering process and could accumulate at the upper part of the cell, thus favoring distorted data of adhesion/pull-off forces as measured by an AFM tip, especially in the case of submicron-sized microbial cells such as bacteria.

Type
Research Article
Copyright
2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnoldi, M., Kacher, C.M., Bauerlein, E., Radmacher, M. & Fritz, M. (1998). Elastic properties of the cell wall of Magnetospirillum gryphiswaldense investigated by atomic force microscopy. Appl Phys A-Mater 66, S613S617.Google Scholar
Auerbach, I.D., Sorensen, C., Hansma, H.G. & Holden, P.A. (2000). Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J Bacteriol 182, 38093815.Google Scholar
Balaban, N.Q., Schwarz, U.S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L. & Geiger, B. (2001). Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3, 466472.Google Scholar
Bett, G.C. & Sachs, F. (2000). Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. J Membr Biol 173, 255263.Google Scholar
Chen, N.X., Ryder, K.D., Pavalko, F.M., Turner, C.H., Burr, D.B., Qiu, J. & Duncan, R.L. (2000). Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol 278, C989C997.Google Scholar
Chiquet, M. & Flück, M. (2001). Early responses to mechanical stress: From signals at the cell surface to altered gene expression, cell and molecular responses to stress. In Protein Adaptations and Signal Transduction, Storey, K.B. & Storey, J.M. (Eds.), pp. 97110. Amsterdam: Elsevier Science B.V.
Gaboriaud, F., Bailet, S., Dague, E. & Jorand, F. (2005). Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J Bacteriol 187, 38643868.Google Scholar
Gallardo-Moreno, A.M., Méndez-Vilas, A., González-Martín, M.L., Nuevo, M.J., Bruque, J.M., Garduño, E. & Pérez-Giraldo, C. (2002). Comparative study of the hydrophobicity of Candida parapsilosis 294 through macroscopic and microscopic analysis. Langmuir 18, 36393944.Google Scholar
Hermanson, G.T. (Ed.) (1996). Bioconjugate Techniques. New York: Academic Press.
Holm, A., Sundqvist, T., Oberg, A. & Magnusson, K.E. (1999). Mechanical manipulation of polymorphonuclear leukocyte plasma membranes with optical tweezers causes influx of extracellular calcium through membrane channels. Med Biol Eng Comput 37, 410412.Google Scholar
Ingber, D.E. (2002). Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91, 877887.Google Scholar
Kasas, S. & Ikai, A. (1995). A method for anchoring round shape cells for atomic force microscope imaging. Biophys J 68, 16781680.Google Scholar
Li, G.L., Smith, C.S., Brun, Y.V. & Tang, J.X. (2005). The elastic properties of the Caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J Bacteriol 187, 257265.Google Scholar
Liu, M. & Post, M. (2000). Cellular responses to mechanical stress. Invited review: Mechanochemical signal transduction in the fetal lung. J Appl Physiol 89, 20782084.Google Scholar
Liu, M., Xu, J., Liu, J., Kraw, M.E., Tanswell, A.K. & Post, M. (1995). Mechanical strain-enhanced fetal lung cell proliferation is mediated by phospholipase C and D and protein kinase C. Am J Physiol 268, 729738.Google Scholar
Marti, O. (2000). Measurement of adhesion pull-off forces with the AFM. In Handbook of Modern Tribology, Bhushan, B. (Ed.), pp. 617640. Boca Raton, FL: CRC Press.
Méndez-Vilas, A., Gallardo-Moreno, A.M., González-Martín, M.L., Calzado-Montero, R., Nuevo, M.J., Bruque, J.M. & Pérez-Giraldo, C. (2004). Surface characterization of two strains of Staphylococcus epidermidis with different slime production by AFM. Appl Surf Sci 238, 1823.Google Scholar
Méndez-Vilas, A., Nuevo, M.J., Gonzalez Martin, M.L. & Labajos-Broncano, L. (2002). Quantitative surface roughness determination of materials by AFM: Some limitations. Mater Sci Forum 408–412, 239244.Google Scholar
Muzzy, J.D. (2005). Thermoplastics—Properties. ME 4210: Manufacturing Processes and Engineering—Summer 2005. Available at: http://www.me.gatech.edu/jonathan.colton/me4210/thermoplastchap.pdf.
Niggel, J., Sigurdson, W. & Sachs, F. (2000). Mechanically induced calcium movements in astrocytes, bovine aortic endothelial cells and C6 glioma cells. J Membr Biol 174, 121134.Google Scholar
Pelling, A.E., Sehati, S., Gralla, E.B., Valentine, J.S. & Gimzewski, J.K. (2004). Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 11471150.Google Scholar
Rudd, R.E., McElfresh, M., Balhorn, R., Allen, J. & Belak, M.J. (2003). Modeling AFM induced mechanical deformation of living cells. In Proceedings of the International Conference on Computer Nanoscience (Nanotech/ICCN'03) San Francisco, CA, February 2003, Laudon, M. & Romanowicz, B. (Eds.) pp. 138141. Boston: Computational Pub.
Schär-Zammaretti, P. & Ubbink, J. (2003). The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys J 85, 40764092.Google Scholar
Shyy, J.Y.-J. & Chien, S. (2002). Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91, 769775.Google Scholar
Smith, A.E., Moxham, K.E. & Middelberg, A.P.J. (2000a). Wall material properties of yeast cells. Chem Eng Sci 55, 20432053.Google Scholar
Smith, A.E., Zhang, Z., Thomas, C.R. & Moxham, K.E. (2000b). The mechanical properties of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97, 98719874.Google Scholar
Thwaites, J.J. & Mendelson, N.H. (1991). Mechanical behaviour of bacterial cell walls. Adv Microb Physiol 32, 174222.Google Scholar
Toma, C.D., Ashkar, S., Gray, M.L., Schaffer, J.L. & Gerstenfeld, L.C. (1997). Signal transduction of mechanical stimuli is dependent on microfilament integrity: Identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res 12, 16261636.Google Scholar
Touhami, A., Nysten, B. & Dufrene, Y.F. (2003). Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 45394543.Google Scholar
Ubbink, J. & Schär-Zammaretti, P. (2005). Probing bacterial interactions: Integrated approaches combining atomic force microscopy, electron microscopy and biophysical techniques. Micron 36, 293320.Google Scholar
Vadillo-Rodríguez, V., Busscher, H.J., Norde, W., De Vries, J., Dijkstra, R.J.B., Stokroos, I. & Van Der Mei, H.C. (2004). Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods. Appl Environ Microbiol 70, 54415446.Google Scholar
Vadillo-Rodríguez, V., Busscher, H.J., Van Der Mei, H.C., De Vries, J. & Norde, W. (2005). Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Coll Surf B 41, 3341.Google Scholar
Velegol, S.B. & Logan, B.E. (2002). Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18, 52565262.Google Scholar
Yao, X., Walter, J., Burke, S., Stewart, S., Jericho, M.H., Pink, D., Hunter, R. & Beveridge, T.J. (2002). Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria. Coll Surf B 23, 213230.Google Scholar
Wang, C.X., Wang, L. & Thomas, C.R. (2004). Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Bot 93, 443453.Google Scholar
Weisenhorn, A.L., Maivald, P., Butt, H.-J. & Hansma, P.K. (1992). Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys Rev B 45, 1122611232.Google Scholar
Wu, H.W., Kuhn, T. & Moy, V.T. (1998). Mechanical properties of L929 cells measured by atomic force microscopy. Scanning 20, 389397.Google Scholar
Xu, W., Mulhern, P.J., Blackford, B.L., Jericho, M.H., Firtel, M. & Beveridge, T.J. (1996). Modeling and measuring the elastic properties of an archaeal surface, the sheath of Ethanospirillum hungatei, and the implication of methane production. J Bacteriol 178, 31063112.Google Scholar
Zhao, L.M., Schaefer, D. & Marten, M.R. (2005a). Assessment of elasticity and topography of Aspergillus nidulans spores via atomic force microscopy. Appl Environ Microbiol 71, 955960.Google Scholar
Zhao, L.M., Schaefer, D., Xu, H.X., Modi, S.J., Lacourse, W.R. & Marten, M.R. (2005b). Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy. Biotechnol Progr 21, 292299.Google Scholar