Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T01:37:07.970Z Has data issue: false hasContentIssue false

Artificial Intelligence Enabled Information Inpainting and Artifact Removal for Electron Tomography

Published online by Cambridge University Press:  30 July 2020

Huolin Xin
Affiliation:
University of California - Irvine, Irvine, California, United States
He Wei
Affiliation:
University of California - Irvine, Irvine, California, United States
Guanglei Ding
Affiliation:
University of California - Irvine, Irvine, California, United States
Chunyang Wang
Affiliation:
University of California - Irvine, Irvine, California, United States
Yitong Liu
Affiliation:
Beijing University of Posts and Teleconmmunications, Beijing, California, United States
Rui Zhang
Affiliation:
University of California - Irvine, Irvine, California, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
FIB-SEM Technology and Electron Tomography for Materials Science and Engineering
Copyright
Copyright © Microscopy Society of America 2020

References

Andersen, A. H. & Kak, A. C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasonic imaging 6, 81-94 (1984).10.1177/016173468400600107CrossRefGoogle ScholarPubMed
Goris, B., Van den Broek, W., Batenburg, K. J., Mezerji, H. H. & Bals, S. Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120-130 (2012).10.1016/j.ultramic.2011.11.004CrossRefGoogle Scholar
Ding, G., Liu, Y., Zhang, R. & Xin, H. L. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond. Scientific reports 9, 12803, doi:10.1038/s41598-019-49267-x (2019).CrossRefGoogle ScholarPubMed