Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T16:16:30.862Z Has data issue: false hasContentIssue false

Achieving High-resolution of Large Specimens Using Aberration-corrected Tomography

Published online by Cambridge University Press:  30 July 2020

Reed Yalisove
Affiliation:
University of Michigan, Ann Arbor, Michigan, United States
Suk Hyun Sung
Affiliation:
University of Michigan, Ann Arbor, Michigan, United States
Jonathan Schwartz
Affiliation:
University of Michigan, Ann Arbor, Michigan, United States
Catherine Groschner
Affiliation:
University of California Berkeley, Berkeley, California, United States
Philipp Pelz
Affiliation:
University of California Berkeley, Berkeley, California, United States
Huihuo Zheng
Affiliation:
Argonne National Laboratory, Lemont, Illinois, United States
Yi Jiang
Affiliation:
Argonne National Laboratory, Lemont, Illinois, United States
Colin Ophus
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Mary Scott
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Peter Ercius
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Robert Hovden
Affiliation:
University of Michigan, Ann Arbor, Michigan, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
FIB-SEM Technology and Electron Tomography for Materials Science and Engineering
Copyright
Copyright © Microscopy Society of America 2020

References

Batson, P. E., Delby, N., and Krivanek, O. L., Nature 418 (2002) p. 617.10.1038/nature00972CrossRefGoogle Scholar
Nellist, P. D., et al. . Science 305 (2004) p. 1741.10.1126/science.1100965CrossRefGoogle Scholar
Muller, D. A., et al. . Science 319 (2008) p. 1073.Google Scholar
Yalisove, R., Sung, S. H., Hovden, R., Microsc. Microanal. 25(Suppl 2) (2019) p. 181010.1017/S1431927619009784CrossRefGoogle Scholar
Yang, Y. et al. Nature 542 (2017) p. 75-79.10.1038/nature21042CrossRefGoogle Scholar
Cowley, J.M., Moodie, A.F.. Acta Cryst. 10 (1957) p. 609-619.10.1107/S0365110X57002194CrossRefGoogle Scholar
Pryor, A., Ophus, C., Miao, J. Adv. Struc. Chem. Imag. 3 (2017) p.15.Google Scholar
Crowther, R., DeRosier, D., Klug, A., Proc. R. Soc. A 317 (1970) p. 319-340.Google Scholar
Hegerl, R., Hoppe, W., Zeitschrift für Naturforschung A 31(12) (1976) p. 1717-1721.10.1515/zna-1976-1241CrossRefGoogle Scholar
Saxberg, B., Saxton, W., Ultramicroscopy 6 (1981) p. 85-90.10.1016/S0304-3991(81)80182-9CrossRefGoogle Scholar
McEwen, B. F., et al. ., Journal of Structural Biology 138 (2002) p. 47.Google Scholar
This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.Google Scholar
Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.Google Scholar
This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357, and resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.Google Scholar