Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T21:01:15.630Z Has data issue: false hasContentIssue false

In Situ WetSTEM Observation of Gold Nanorod Self-Assembly Dynamics in a Drying Colloidal Droplet

Published online by Cambridge University Press:  18 March 2014

Filip Novotný*
Affiliation:
Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
Petr Wandrol
Affiliation:
FEI, Podnikatelská 6, 612 00, Brno, Czech Republic
Jan Proška
Affiliation:
Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague, Czech Republic
Miroslav Šlouf
Affiliation:
Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
*
*Corresponding author. [email protected]
Get access

Abstract

Direct in situ visualization of nanoparticles in a liquid is an important challenge of modern electron microscopy. The increasing significance of bottom-up methods in nanotechnology requires a direct method to observe nanoparticle interactions in a liquid as the counterpart to the ex situ electron microscopy and indirect scattering and spectroscopy methods. Especially, the self-assembly of anisometric nanoparticles represents a difficult task, and the requirement to trace the route and orientation of an individual nanoparticle is of highest importance. In our approach we utilize scanning transmission electron microscopy under environmental conditions to visualize the mobility and self-assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in an aqueous colloidal solution. We directly observed the drying-mediated AuNR self-assembly in situ during rapid evaporation of a colloidal droplet at 4°C and pressure of about 900 Pa. Several types of final AuNR packing were documented including side-by-side oriented chains, tip-to-tip loosely arranged nanorods, and domains of vertically aligned AuNR arrays. The effect of local heating by electron beam is used to qualitatively asses the visco-elastic properties of the formed AuNR/CTAB/water membrane. Local heating induces the dehydration and contraction of a formed membrane indicated either by its rupture and/or by movement of the embedded AuNRs.

Type
In Situ Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkilany, A.M., Lohse, S.E. & Murphy, C.J. (2013). The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc Chem Res 46, 650661.CrossRefGoogle ScholarPubMed
Alvarez-Puebla, R.A., Agarwal, A., Manna, P., Khanal, B.P., Aldeanueva-Potel, P., Carbo-Argibay, E., Pazos-Perez, N., Vigderman, L., Zubarev, E.R., Kotov, N.A. & Liz-Marzan, L.M. (2011). Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci USA 108, 81578161.CrossRefGoogle ScholarPubMed
Barkay, Z. (2010). Wettability study using transmitted electrons in environmental scanning electron microscope. App Phys Lett 96, 183109.CrossRefGoogle Scholar
Beaunier, L., Boumendil, J., Ehret, G. & Laub, D. (2010). Sample Preparation Handbook for Transmission Electron Microscopy: Techniques . New York: Springer.Google Scholar
Bigioni, T.P., Lin, X.M., Nguyen, T.T., Corwin, E.I., Witten, T.A. & Jaeger, H.M. (2006). Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5, 265270.CrossRefGoogle ScholarPubMed
Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D. & Gauthier, C. (2007). A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron 38, 390401.CrossRefGoogle ScholarPubMed
Bogner, A., Thollet, G., Basset, D., Jouneau, P.-H. & Gauthier, C. (2005). Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.CrossRefGoogle Scholar
Burrows, N.D. & Penn, R.L. (2013). Cryogenic transmission electron microscopy: Aqueous suspensions of nanoscale objects. Microsc Microanal 19, 15421553.CrossRefGoogle ScholarPubMed
Busbee, B.D., Obare, S.O. & Murphy, C.J. (2003). An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15, 414416.CrossRefGoogle Scholar
Chen, H., Shao, L., Li, Q. & Wang, J. (2013). Gold nanorods and their plasmonic properties. Chem Soc Rev 42, 26792724.CrossRefGoogle ScholarPubMed
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.CrossRefGoogle Scholar
Do Amaral, M., Bogner, A., Gauthier, C., Thollet, G., Jouneau, P.-H., Cavaillé, J.-Y. & Asua, J.M. (2005). Novel experimental technique for the determination of monomer droplet size distribution in miniemulsion. Macromol Rapid Comm 26, 365368.CrossRefGoogle Scholar
Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J. & El-Sayed, M.A. (2012). The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev 41, 27402779.CrossRefGoogle ScholarPubMed
Dukes, M.J., Jacobs, B.W., Morgan, D.G., Hegde, H. & Kelly, D.F. (2013). Visualizing nanoparticle mobility in liquid at atomic resolution. Chem Comm, http://pubs.rsc.org/en/content/articlepdf/2013/cc/c3cc41136b, retrieved 2013-09-21CrossRefGoogle ScholarPubMed
Edgar, J.A., McDonagh, A.M. & Cortie, M.B. (2012). Formation of gold nanorods by a stochastic “Popcorn” mechanism. ACS Nano 6, 11161125.CrossRefGoogle ScholarPubMed
Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning electron microscopy and X-ray microanalysis, pp. 621645. New York: Springer.CrossRefGoogle Scholar
Grzybowski, B.A. & Campbell, C.J. (2004). Complexity and dynamic self-assembly. Chem Eng Sci 59, 16671676.CrossRefGoogle Scholar
Guerrero-Martínez, A., Pérez-Juste, J., Carbó-Argibay, E., Tardajos, G. & Liz-Marzán, L.M. (2009). Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew Chem Int Ed 48, 94849488.CrossRefGoogle ScholarPubMed
Lin, X.M., Jaeger, H.M., Sorensen, C.M. & Klabunde, K.J. (2001). Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105, 33533357.CrossRefGoogle Scholar
Lohse, S.E. & Murphy, C.J. (2013). The quest for shape control: A history of gold nanorod synthesis. Chem Mater 25, 12501261.CrossRefGoogle Scholar
Maraloiu, V.A., Hamoudeh, M., Fessi, H. & Blanchin, M.G. (2010). Study of magnetic nanovectors by wet-STEM, a new ESEM mode in transmission. J Colloid Interface Sci 352, 386392.CrossRefGoogle ScholarPubMed
Ming, T., Kou, X., Chen, H., Wang, T., Tam, H.-L., Cheah, K.-W., Chen, J.-Y. & Wang, J. (2008). Ordered gold nanostructure assemblies formed by droplet evaporation. Angew Chem 120, 98319836.CrossRefGoogle Scholar
Moh, K., Werner, U., Koch, M. & Veith, M. (2010). Silver nanoparticles with controlled dispersity and their assembly into superstructures. Adv Eng Mater 12, 368373.CrossRefGoogle Scholar
Mohamed, M.B., Volkov, V., Link, S. & El-Sayed, M.A. (2000). The “lightning” gold nanorods: Fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317, 517523.CrossRefGoogle Scholar
Murray, C.B., Sun, S.H., Gaschler, W., Doyle, H., Betley, T.A. & Kagan, C.R. (2001). Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45, 4756.CrossRefGoogle Scholar
Narayanan, S., Wang, J. & Lin, X.-M. (2004). Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering. Phys Rev Lett 93, 135503.CrossRefGoogle ScholarPubMed
Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P. & Halas, N.J. (2013). Solar vapor generation enabled by nanoparticles. ACS Nano 7, 4249.CrossRefGoogle ScholarPubMed
Nikoobakht, B. & El-Sayed, M.A. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15, 19571962.CrossRefGoogle Scholar
Nikoobakht, B., Wang, Z.L. & El-Sayed, M.A. (2000). Self-assembly of gold nanorods. J Phys Chem B 104, 86358640.CrossRefGoogle Scholar
Novotný, F., Proška, J., Richter, I. & Fiala, P. (2009). Preparation of metallo-dielectric diffractive and plasmonic structures via self-assembly. OSA Technical Digest (CD) (Optical Society of America, http://dx.doi.org/10.1364/AIOM.2009.AThA2). Accessed August 19, 2013.Google Scholar
Park, J., Zheng, H., Lee, W.C., Geissler, P.L., Rabani, E. & Alivisatos, A.P. (2012). Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6, 20782085.CrossRefGoogle ScholarPubMed
Peng, B., Li, G., Li, D., Dodson, S., Zhang, Q., Zhang, J., Lee, Y.H., Demir, H.V., Yi Ling, X. & Xiong, Q. (2013). Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 59936000.CrossRefGoogle ScholarPubMed
Petukhova, A., Greener, J., Liu, K., Nykypanchuk, D., Nicolay, R., Matyjaszewski, K. & Kumacheva, E. (2012). Standing arrays of gold nanorods end-tethered with polymer ligands. Small 8, 731737.CrossRefGoogle ScholarPubMed
Pietra, F., Rabouw, F.T., Evers, W.H., Byelov, D.V., Petukhov, A.V., de Mello Donegá, C. & Vanmaekelbergh, D. (2012). Semiconductor nanorod self-assembly at the liquid/air interface studied by in situ GISAXS and ex situ TEM. Nano Lett 12, 55155523.CrossRefGoogle ScholarPubMed
Rabani, E., Reichman, D.R., Geissler, P.L. & Brus, L.E. (2003). Drying-mediated self-assembly of nanoparticles. Nature 426, 271274.CrossRefGoogle ScholarPubMed
Sau, T.K. & Murphy, C.J. (2005). Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21, 29232929.CrossRefGoogle ScholarPubMed
Šlouf, M., Lapčíková, M. & Štěpánek, M. (2011). Imaging of block copolymer vesicles in solvated state by wet scanning transmission electron microscopy. Eur Polym J 47, 12731278.CrossRefGoogle Scholar
Stokes, D. (2008). Principles and Practice of Variable Pressure : Environmental Scanning Electron Microscopy (VP-ESEM) . Hoboken: John Wiley & Sons.Google Scholar
Sztrum-Vartash, C.G. & Rabani, E. (2010). Lattice gas model for the drying-mediated self-assembly of nanorods. J Phys Chem C 114, 1104011049.CrossRefGoogle Scholar
Tanaka, H. (2000). Viscoelastic phase separation. J Phys Condens Matter 12, R207R264.CrossRefGoogle Scholar
Wang, Z.L., Harfenist, S.A., Whetten, R.L., Bentley, J. & Evans, N.D. (1998). Bundling and interdigitation of adsorbed thiolate groups in self-assembled nanocrystal superlattices. J Phys Chem B 102, 30683072.CrossRefGoogle Scholar
White, E.R., Mecklenburg, M., Shevitski, B., Singer, S.B. & Regan, B.C. (2012). Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 36953698.CrossRefGoogle ScholarPubMed
Xie, Y., Guo, S., Guo, C., He, M., Chen, D., Ji, Y., Chen, Z., Wu, X., Liu, Q. & Xie, S. (2013). Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism. Langmuir 29, 62326241.CrossRefGoogle ScholarPubMed
Zheng, H., Claridge, S.A., Minor, A.M., Alivisatos, A.P. & Dahmen, U. (2009). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9, 24602465.CrossRefGoogle Scholar
Supplementary material: PDF

Novotný Supplementary Material

Figures

Download Novotný Supplementary Material(PDF)
PDF 720.8 KB

Novotný Supplementary Material

Movie 1

Download Novotný Supplementary Material(Video)
Video 3.3 MB

Novotný Supplementary Material

Movie 2

Download Novotný Supplementary Material(Video)
Video 10.1 MB

Novotný Supplementary Material

Movie 3

Download Novotný Supplementary Material(Video)
Video 6.1 MB

Novotný Supplementary Material

Movie 4

Download Novotný Supplementary Material(Video)
Video 7.4 MB

Novotný Supplementary Material

Movie 5

Download Novotný Supplementary Material(Video)
Video 7.1 MB