Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T08:39:04.306Z Has data issue: false hasContentIssue false

In situ Determination and Imaging of Physical Properties of Soft Organic Materials by Analytical Transmission Electron Microscopy

Published online by Cambridge University Press:  28 February 2014

Nadejda B. Matsko*
Affiliation:
Graz Centre for Electron Microscopy, Graz, Austria
Franz P. Schmidt
Affiliation:
Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz, Austria Department of Physics, University of Graz, Graz, Austria
Ilse Letofsky-Papst
Affiliation:
Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz, Austria
Artem Rudenko
Affiliation:
J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Kansas, USA
Vikas Mittal
Affiliation:
Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, UAE.
*
*Corresponding author. [email protected]
Get access

Abstract

Analytical transmission electron microscopy (ATEM) offers great flexibility in identification of the structural—chemical organization of soft materials at the level of individual macromolecules. However, the determination of mechanical characteristics such as hardness/elasticity of the amorphous and polycrystalline organic substances by ATEM has been problematic so far. Here, we show that energy filtered TEM (EFTEM) measurements enable direct identification and study of mechanical properties in complex (bio-)polymer systems of relevance for different industrial and (bio-)medical applications. We experimentally demonstrate strong correlations between hardness/elasticity of different polymers (polycaprolactone, polylactid, polyethelene, etc.) and their volume plasmon energy. Thickness and anisotropy effects, which substantially mask the material contrast in EFTEM bulk plasmon images, can be adequately removed by normalizing the latter by carbon elemental map. EFTEM data has been validated using atomic force microscopy phase images, where phase shift related to the hardness and elastic modulus of the materials.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjea, A. & Smith, J.R. (1988). Origins of the universal binding-energy relation. Phys Rev B 37(12), 66326645.Google Scholar
Bornscheuer, U.T., Huisman, G.W., Kazlauskas, R.J., Lutz, S., Moore, J.C. & Robins, K. (2012). Engineering the third wave of biocatalysis. Nature 485, 185194.Google Scholar
Botton, G. (2007). Analytical electron microscopy. In Science of Microscopy, Hawkes, P.W. & Spence, J.C.H. (Eds.), pp. 273405. Berlin: Springer.Google Scholar
Buurmans, I.L.C. & Weckhuysen, B.M. (2012). Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4, 873886.Google Scholar
Cowie, J.M.G. & Arrighi, V. (2007). Polymers: Chemistry and Physics of Modern Materials. Boca Raton: CRC Press.Google Scholar
Daniels, H.R., Brydson, R., Brown, A. & Rand, B. (2003). Quantitative valence plasmon mapping in the TEM: Viewing physical properties at the nanoscale. Ultramicroscopy 96(3–4), 547558.Google Scholar
Egerton, R. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.Google Scholar
Egerton, R.F. (2007). Electron energy-loss spectroscopy in TEM. Rep Prog Phys 72, 125.Google Scholar
Ferrante, J., Schlosser, H. & Smith, J.R. (1991). Global expressions for presenting diatomic potential-energy curves. Phys Rev B 43, 34873494.Google Scholar
García De Abajo, F.J. (2010). Optical excitations in electron microscopy. Rev Modern Phys 82(1), 209275.Google Scholar
Graetzel, M., Janssen, R.A.J., Mitzi, D.B. & Sargent, E.H. (2012). Materials interface engineering for solution-processed photovoltaics. Nature 488, 304312.Google Scholar
Haynes, W.M. (2011). CRC Handbook of Chemistry and Physics, 92nd ed. Boca Raton: CRC Press.Google Scholar
Hofer, F., Grogger, W., Kothleitner, G. & Warbichler, P. (1997). Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67, 83103.Google Scholar
Howe, J.M. & Oleshko, V.P. (2004). Application of valence electron energy-loss spectroscopy and plasmon energy mapping for determining material properties at the nanoscale. J Electron Microsc 53(4), 339351.Google Scholar
Laffont, L., Monthioux, M. & Serin, V. (2002). Plasmon as a tool for in situ evaluation of physical properties for carbon materials. Carbon 40(5), 767780.Google Scholar
Leapman, R.D. (1986). Microbeam Analysis. San Francisco: San Francisco Press.Google Scholar
Magonov, S. & Reneker, D. (1997). Characterization of polymer surfaces with atomic force microscopy. Annu Rev Mater Sci 27, 175222.Google Scholar
Matsko, N. (2007). Atomic force microscopy applied to study macromolecular content of embedded biological material. Ultramicroscopy 107, 95105.Google Scholar
Matsko, N.B., Letofsky-Papst, I., Albu, M. & Mittal, V. (2013). An analytical technique to extract surface information of negatively stained or heavy-metal shadowed organic materials within the TEM. Microsc Microanal 19, 642651.Google Scholar
Mittal, V. & Matsko, N.B. (2012). Analytical Imaging Techniques for Soft Matter Characterization. Heidelberg: Springer.Google Scholar
Monthioux, M., Soutric, F. & Serin, V. (1997). Recurrent correlation between the electron energy loss spectra and mechanical properties for carbon fibers. Carbon 35(10–11), 16601664.Google Scholar
Nellist, P.D. (2007). Scanning transmission electron microscopy . In Science of Microscopy, Hawkes, P.W. & Spence, J.C.H. (Eds.), pp. 65132. Berlin: Springer.Google Scholar
Nili, H., Kalantar-zadeh, K., Bhaskaran, M. & Sriram, S. (2013). In situ nanoindentation: Probing nanoscale multifunctionality. Prog Mater Sci 58, 129.Google Scholar
Oleshko, V.P. (2002). In Industrial Applications of Electron Microscopy, New York: M. Dekker.Google Scholar
Oleshko, V.P. (2008). Size confinement effects on electronic and optical properties of silver halide nanocrystals as probed by cryo-EFTEM and EELS. Plasmonics 3(1), 4146.Google Scholar
Oleshko, V.P. (2012). The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale. J Nanosc Nanotechnol 12(11), 85808588.Google Scholar
Oleshko, V.P., Gijbels, R. & Amelinckx, S. (2000). Electron microscopy and scanning microanalysis. In Encyclopedia of Analytical Chemistry, Meyers, R.A. (Ed.), pp. 90889120. Chichester: Wiley & Sons.Google Scholar
Oleshko, V.P. & Howe, J.M. (2007). In situ determination and imaging of physical properties of metastable and equilibrium precipitates using valence electron energy-loss spectroscopy and energy-filtering transmission electron microscopy. J Appl Phys 101, 054308.Google Scholar
Oleshko, V.P., Murayama, M. & Howe, J.M. (2002). Use of plasmon spectroscopy to evaluate the mechanical properties of materials at the nanoscale. Microsc Microanal 8(4), 350364.Google Scholar
Pines, D. (1956). Collective energy losses in solids. Rev Modern Phys 28(3), 184198.Google Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy. Berlin: Springer.Google Scholar
Reimer, I., Fromm, I., Hirsch, P., Plate, U. & Rennekamp, R. (1992). Combination of EELS modes and electron spectroscopic imaging and diffraction in an energy-filtering electron microscope. Ultramicroscopy 46, 335347.Google Scholar
Rösner, H., Boucharat, N., Markmann, J., Padmanabhan, K.A. & Wilde, G. (2009). In situ transmission electron microscopic observations of deformation and fracture processes in nanocrystalline palladium and Pd90Au10. Mater Sci Eng A 525, 102106.Google Scholar
Schaffer, B., Grogger, W. & Kothleitner, G. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102, 2736.Google Scholar
Sigle, W., Krämer, S., Varshney, V., Zern, A., Eigenthaler, U. & Rühle, M. (2003). Plasmon energy mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 96(3–4), 565571.Google Scholar
Wiesendanger, R. (2003). Scanning Probe Microscopy And Spectroscopy. Cambridge: Cambridge university Press.Google Scholar
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy: A Textbook for Materials Science. Berlin: Springer.Google Scholar
Williams, D.B. & Edington, J.W. (1976). High resolution microanalysis in materials science using electron energy loss measurements. J Microsc 108(2), 113145.Google Scholar
Xu, S., Tay, B.K., Tan, H.S., Zhong, L. & Tu, Y.Q. (1996). Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy. J Appl Phys 79, 7234.Google Scholar
Supplementary material: File

Matsko Supplementary Material

Figures

Download Matsko Supplementary Material(File)
File 1.3 MB