Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-22T03:18:19.413Z Has data issue: false hasContentIssue false

The general vacuum Bianchi type-V solution in the Brans-Dicke theory

Published online by Cambridge University Press:  24 October 2008

D. Lorenz-Petzold
Affiliation:
Fakultät für Physik, Universität Konstanz, D-7750 Konstanz, Fed. Rep., Germany

Extract

Amongst the various modifications of the general theory of relativity (GRT), the scalar-tensor theory of Brans and Dicke (BDT) is treated most seriously ([2], [17], [13]). The BDT is consistent with observations as long as the coupling parameter ω between the scalar and tensor components of gravitation is about equal to or greater than 500 [18]. However, there are no a priori theoretical reasons for excluding other values of ω. In the limit ω → ∞, the BDT reduces to the GRT for a constant BDT-scalar field Φ

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Belinskii, V. A. and Khalatnikov, I. M.. Effect of scalar and vector fields on the nature of the cosmological singularity. Zh. Eksper. Teoret. Fiz. 63 (1972), 11211134 [transl. Soviet Phys. JETP 36 (1972), 591–810].Google Scholar
[2] Brans, C. and Dicke, R. H.. Mach's principle and a relativistic theory of gravitation. Phys. Rev. 124 (1961), 925935.Google Scholar
[3] Ellis, G. F. R. and MacCallum, M. A. H.. A class of homogeneous cosmological models. Comm. Math. Phys. 12 (1969), 108141.CrossRefGoogle Scholar
[4] Ferrara, S., Taylor, J. G. and van Nieuwenhuizen, P.. Superaymmetry and Super-gravity (World Scientific, 1983).Google Scholar
[5] Freund, P. G. O.. cosmologies, Kaluza-Klein. Nuclear Phys. B209 (1982), 146156.CrossRefGoogle Scholar
[6] Joseph, V.. A spatially homogeneous gravitational field. Proc. Cambridge Philos. Soc. 62 (1966), 8789.CrossRefGoogle Scholar
[7] Lorenz-Petzold, D.. Bianchi types II, VIII and IX solutions in the Brans-Dicke theory. J. Phys. A (1983) (to appear.)Google Scholar
[8] Lorenz-Petzold, D.. (Universität Konstanz 1983) (In preparation.)Google Scholar
[9] Lorenz-Petzold, D.. Comment on the general vacuum solutions in Brans-Dicke cosmology. Astrophys. and Space Sci. (1983). (To appear.)Google Scholar
[10] Matzner, R. A., Ryan, M. P. and Toton, E. T.. The Brans-Dicke theory and anisotropic cosmologies. Lett. Nuovo Cimento (2) (1973), 161172.Google Scholar
[11] Nariai, H.. Hamiltonian approach to the dynamics of expanding homogeneous universes in the Brans-Dicke cosmology. Progr. Theoret. Phys. 47 (1972), 18241843.Google Scholar
[12] Nariai, H.. On irrotational Bianchi-type universes in the Brans-Dicke cosmology. Prog. Theoret. Phys. 48 (1972), 703705.CrossRefGoogle Scholar
[13] Raychaudhuri, A. K.. Theoretical Cosmology (Clarendon Press, 1979).Google Scholar
[14] Ruban, V. A. and Finkelstein, A. M.. Generalizations of the Taub-Kasner cosmological metric in the scalar-tensor gravitation theory. Lett. Nuovo Cimento (2) 5, (1972), 289293.Google Scholar
[15] Ruban, V. A. and Finkelstein, A. M.. On the initial singularity in the scalar-tensor anisotropic cosmology. Gen. Relativity Gravitation 6 (1975), 601638.CrossRefGoogle Scholar
[16] Scherk, J.. From supergravity to antigravity. In Supergravity, ed. van Nieuwenhuizen, P. and Freedman, D. Z. (North-Holland, 1979).Google Scholar
[17] Weinberg, S.. Gravitation and Cosmology (Wiley, 1972).Google Scholar
[18] Will, C. M.. Theory and Experiment in Gravitational Physics (Cambridge University Press, 1981).Google Scholar