Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-01T00:09:30.889Z Has data issue: false hasContentIssue false

Closed model categories for the n-type of spaces and simplicial sets

Published online by Cambridge University Press:  24 October 2008

Carmen Elvira-Donazar
Affiliation:
Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
Luis-Javier Hernandez-Paricio
Affiliation:
Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain

Abstract

For each integer n ≥ 0, we give a distinct closed model category structure to the categories of spaces and of simplicial sets. Recall that a non-empty map is said to be a weak equivalence if it induces isomorphisms on the homotopy groups for any choice of base point. Putting the condition on dimensions ≥ n, we have the notion of a weak n-equivalence which is at the base of the nth closed model category structure given here.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Artin, M. and Mazur, B.. Etale Homotopy. Lecture Notes in Maths, 100 (Springer-Verlag, 1969).CrossRefGoogle Scholar
[2]Barratt, M. G., Gugenheim, V. K. A. M. and Moore, J. C.. On semisimplicial fibre-bundles. Am. J. of Math. 81 (1959), 639657.CrossRefGoogle Scholar
[3]Cabello, J. G. and GarzóN, A. R.. A closed model structure for n-types of Simplicial groups. Preprint (1993).Google Scholar
[4]Elvira, C.. N-tipos y cohomotopía (Tesis, Universidad de Zaragoza, 1991).Google Scholar
[5]Gabriel, P. and Zisman, M.. Calculus of fractions and homotopy theory (Springer-Verlag, 1967).CrossRefGoogle Scholar
[6]Hernández, L. J. and Porter, T.. Categorical models of n-types for pro-crossed complexes and prospaces. Lecture Notes in Math., 1509 (1992), 146186.CrossRefGoogle Scholar
[7]Hernández, L. J. and Porter, T.. An embedding theorem for proper n-types. Top. and its Appl. 48 (1992), 215235.CrossRefGoogle Scholar
[8]Porter, T.. A combinatorial definition of n-types. Topology 32 (1993), 524.CrossRefGoogle Scholar
[9]Quillen, D.. Homotopical Algebra. Lect. Notes in Math. 43 (Springer, 1967).CrossRefGoogle Scholar
[10]Quilles, D.. Rational Homotopy Theory. Ann. of Math. 90 (1969), 205295.CrossRefGoogle Scholar
[11]Strøm, A.. The homotopy category is a homotopy category. Arch. Math. 23 (1973), 435441.CrossRefGoogle Scholar
[12]Whitehead, J. H. C.. Combinatorial homotopy I. Bull. Amer. Soc. 55 (1949), 213245.CrossRefGoogle Scholar
[13]Whitehead, J. H. C.. Combinatorial homotopy II. Bull. Amer. Soc. 55 (1949), 453496.CrossRefGoogle Scholar