High-current-density electropulsing was applied to a coarse-grained Cu–Zn alloy with two phases of α-phase and β′-phase. It was found that with an electropulsing treatment, ultrafine-grained (UFG) microstructure could be formed in the α-phase, but could not be formed in the β-phase. The results indicated that the formation of UFG microstructure was dependent on solid-state phase transformation. The main reason for the formation of UFG microstructure by electropulsing treatment resulted from the effect of a decrease in thermodynamic barrier and enhancement of nucleation rate in a current-carrying system, but not from the high heating and cooling rate during electropulsing treatment. The bulk UFG samples prepared by electropulsing treatment were free of porosity and contamination and had no large microstrain. It was reasonable to anticipate that a new method might be developed to produce ideal bulk UFG samples directly from the conventional coarse-grained materials by application of electropulsing.