Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T12:40:08.723Z Has data issue: false hasContentIssue false

Substrate temperature: A critical parameter for the growth of microcrystalline silicon-carbon alloy thin films at low power

Published online by Cambridge University Press:  31 January 2011

Arup Dasgupta
Affiliation:
Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032, India
S. C. Saha
Affiliation:
Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032, India
Swati Ray*
Affiliation:
Energy Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700 032, India
R. Carius
Affiliation:
ISI-PV, Forschungszentrum, D-52425 Jülich, Germany
*
a)Address all correspondence to this author.
Get access

Abstract

P-type microcrystalline silicon-carbon alloy thin films have been prepared at low power by employing radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD) technique; judicious choice of deposition parameters is necessary. Substrate temperature has been observed to be the most critical parameter, while high hydrogen dilution is necessary but not a sufficient condition for obtaining crystallinity in silicon-carbon alloy thin films. Best microcrystallinity at moderate power density (78 mW/cm2) has been obtained at a fairly low substrate temperature (180 °C). The highest conductivity of 5.7 Scm−1 of a boron-doped microcrystalline sample could be achieved. Incorporation of carbon in these films has been confirmed from x-ray photoelectron spectroscopic (XPS) studies. Carbon is, however, incorporated only in the amorphous phase while the crystallites are of silicon only as observed from Raman spectra.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hattori, Y., Kruangam, D., Toyama, T., Okamoto, H., and Hamakawa, Y., Tech. Dig. Int. PVSEC–3, 171 (1987).Google Scholar
2.Guha, S., Yang, J., Banerjee, A., Glatfelter, T., Hoffman, K., and Xu, X., Tech. Dig. Int. PVSEC–7, 43 (1993).Google Scholar
3.Demichelis, F., Pirri, C. F., and Tresso, E., Philos. Mag. B 66, 135 (1992).Google Scholar
4.Wang, C., Lucovsky, G., and Nemanich, R. J., J. Non-Cryst. Solids 137–138, 741 (1991).Google Scholar
5.Hanaki, K., Hattori, T., and Hamakawa, Y., Tech. Dig. Int. PVSEC–3, 49 (1987).Google Scholar
6.Hamakawa, Y., Matsumoto, Y., Hirata, G., and Okamoto, H., in Materials Issues in Microcrystalline Semiconductors, edited by Fauchet, P. M., Tanaka, K., and Tsai, C. C. (Mater. Res. Soc. Symp. Proc. 164, Pittsburgh, PA, 1990), p. 291.Google Scholar
7.Flükiger, R., Meier, J., Shah, A., Pohl, J., Tzolov, M., and Carius, R., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 793.Google Scholar
8.Ghosh, S., Dasgupta, A., and Ray, S., J. Appl. Phys. 78, 3200 (1995).Google Scholar
9.Dasgupta, A., Ghosh, S., and Ray, S., J. Mater. Sci. Lett. 14, 1037 (1995).Google Scholar
10.Veprek, S., J. Chem. Phys. 57, 952 (1972).Google Scholar
11.Drevillon, B., Solomon, I., and Fang, M., in Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P.M., Tsai, C. C., Canham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993), p. 455.Google Scholar
12.Boland, J. J. and Parsons, G. N., Science 256, 1304 (1992).Google Scholar
13.Solomon, I., Schmidt, M. P., and Tran-Quoc, H., Phys. Rev. B 38, 9895 (1988).Google Scholar
14.Topics in Applied Physics, The Physics of Hydrogenated Amorphous Silicon I, edited by Joannopoulos, J.D. and Lucovsky, G. (Springer-Verlag, 1984), Vol. 55, pp. 1617.Google Scholar
15.Kobliska, R. and Solin, S., Phys. Rev. B 8, 3799 (1973).Google Scholar
16.Luysberg, M., Hapke, P., Carius, R., and Finger, F., Philos. Mag. A 34, 936 (1996).Google Scholar
17.Hattori, Y., Kruangam, D., Toyama, T., Okamoto, H. and Hamakawa, Y., Appl. Surf. Sci. 33/34, 1276 (1988).Google Scholar
18.Fundamentals of Surface and Thin Film Analysis, edited by Feldman, L. C. and Mayer, J. W. (North-Holland, Amsterdam, 1986), p. 323.Google Scholar
19.Gat, E., El Khakani, M. A., Chaker, M., Jean, A., Boily, S., Pepin, H., Keiffer, J. C., Durand, J., Cross, B., Rousseaux, F., and Gujrathi, S., J. Mater. Res. 7, 2478 (1992).Google Scholar
20.Demichelis, F., Pirri, C. F., and Tresso, E., J. Appl. Phys. 72, 1327 (1992).Google Scholar