Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T08:41:38.584Z Has data issue: false hasContentIssue false

Preparation of Lutetium Nitride by Direct Nitridation

Published online by Cambridge University Press:  03 March 2011

Takayuki Suehiro*
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Naoto Hirosaki
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Yoshinobu Yamamoto
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Toshiyuki Nishimura
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Mamoru Mitomo
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Junichi Takahashi
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
Hisanori Yamane
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Lutetium nitride (LuN), an end member of a new quaternary system Si3N4–SiO2–Lu2O3–LuN, was synthesized by direct nitridation of a lutetium metal. The nitridation extent of the lutetium ingot (10 × 5 × 2 mm) reached about 97% by heating at 1600 °C for 8 h with an applied N2 pressure of 0.92 MPa; the initial shape of the bulk metal was maintained in the course of nitridation. The resulting nitrided lutetium possessed a moderately low oxygen content (∼0.7 wt%), which enables the preparation of uncharacterized high nitrogen-containing phases in the Lu–Si–O–N system.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Guo, S., Hirosaki, N., Yamamoto, Y., Nishimura, T., andM. Mitomo, Scr. Mater. 45 867 (2001).CrossRefGoogle Scholar
2Wills, R.R., Holmquist, S., Wimmer, J.M. and Cunningham, J.A., J. Mater. Sci. 11 1305 (1976).CrossRefGoogle Scholar
3Lange, F.F., Singhal, S.C. and Kuznicki, R.C., J. Am. Ceram. Soc. 60 249 (1977).CrossRefGoogle Scholar
4Gauckler, L.J., Hohnke, H. and Tien, T.Y., J. Am. Ceram. Soc. 63 35 (1980).CrossRefGoogle Scholar
5Mitomo, M., Izumi, F., Horiuchi, S. and Matsui, Y., J. Mater. Sci. 17 2359 (1982).CrossRefGoogle Scholar
6Mah, T.I., Mazdiyasni, K.S. and Ruh, R., J. Am. Ceram. Soc. 62 12 (1979).CrossRefGoogle Scholar
7Vetrano, J.S., Kleebe, H-J., Hampp, E., Hoffmann, M.J., Ruhle, M. and Cannon, R.M., J. Mater. Sci. 28 3529 (1993).CrossRefGoogle Scholar
8Nishimura, T. and Mitomo, M., J. Mater. Res. 10 240 (1995).CrossRefGoogle Scholar
9Hirosaki, N., Yamamoto, Y., Nishimura, T., Mitomo, M., Takahashi, J., Yamane, H. and Shimada, M., J. Am. Ceram. Soc. 85 2861 (2002).CrossRefGoogle Scholar
10Takahashi, J., Yamane, H., Shimada, M., Yamamoto, Y., Hirosaki, N., Mitomo, M., Oikawa, K., Torii, S. and Kamiyama, T., J. Am. Ceram. Soc. 85 2072 (2002).CrossRefGoogle Scholar
11Kempter, C.P., Krikorian, N.H. and Mcguire, J.C., J. Phys. Chem. 61 1237 (1957).CrossRefGoogle Scholar
12Gambino, R.J. and Cuomo, J.J., J. Electrochem. Soc. 113 401 (1966).CrossRefGoogle Scholar
13Magyar, B., Inorg. Chem. 7 1457 (1968).CrossRefGoogle Scholar
14Ekstrom, T.C., MacKenzie, K.J.D., Ryan, M.J., Brown, I.W.M. and White, G.V., J. Mater. Chem. 7 505 (1997).CrossRefGoogle Scholar
15Liddell, K. and Thompson, D.P., J. Mater. Chem. 11 507 (2001).CrossRefGoogle Scholar
16Woike, M. and Jeitschko, W., J. Solid. State Chem. 129 312 (1997).CrossRefGoogle Scholar
17Wada, T., Muromachi, E., Yukino, K., and Kimizuka, N., Japan Patent No. 68471 (1994).Google Scholar
18Cullity, B.D.Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1956), p. 338.Google Scholar
19Didchenko, R. and Gortsema, F.P., J. Phys. Chem. Solids 24 863 (1963).CrossRefGoogle Scholar
20Huttinger, K.J., High Temp. High Press. 2 89 (1970).Google Scholar
21Scholz, H. and Greil, P., J. Mater. Sci. 26 669 (1991).CrossRefGoogle Scholar