Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:46:46.772Z Has data issue: false hasContentIssue false

Mechanochemistry of the titanium–silicon system: Compositional effects

Published online by Cambridge University Press:  31 January 2011

S. Doppiu
Affiliation:
Department of Chemistry, Via Vienna 2, 07100 Sassari, Italy
M. Monagheddu
Affiliation:
Department of Chemistry, Via Vienna 2, 07100 Sassari, Italy
G. Cocco*
Affiliation:
Department of Chemistry, Via Vienna 2, 07100 Sassari, Italy
F. Maglia
Affiliation:
Department of Physical Chemistry and C.S.T.E./CNR, University of Pavia, V.le Taramelli 16, 27100 Pavia, Italy
U. Anselmi-Tamburini
Affiliation:
Department of Physical Chemistry and C.S.T.E./CNR, University of Pavia, V.le Taramelli 16, 27100 Pavia, Italy
Z. A. Munir
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616–5294
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

The mechanochemical behavior of the Ti–Si system was investigated across the whole composition range at a constant milling intensity. At low Si content the mechanical alloying process leads progressively to an amorphous structure. In the central range of the equilibrium diagram, crystalline intermetallic compounds form with a combustion-like behavior. A nanostructured composite of TiSi2 gradually evolves above the Ti25Si75 stoichiometry. Transformation behaviors relate to the thermodynamic and thermochemical properties of the tested mixtures as well as with their mechanical features and structural refinement, which change drastically within the explored composition range.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Binary Alloy Phase Diagram, edited by Massalski, T.B. (American Society for Metals, Metals Park, OH44073, 1986), Vol. 2.Google Scholar
2.Veltl, G., Sholtz, B., and Kunze, H.D., in New Materials by Mechanical Alloying Techniques, edited by Arzt, E. and Shultz, L. (DGM Informationsgesellschaft, Oberursel, Germany, 1989),p. 79.Google Scholar
3.Ahn, J.H., Chung, H.S., Watanabe, R., and Park, Y.H., Mater. Sci. Forum 88–90, 347 (1992).CrossRefGoogle Scholar
4.Yamasaky, T., Ogino, Y., Morishita, K., Fukuoka, K., Atou, T., and Syono, Y., Mater. Sci. Eng. A179–A180, 220 (1994).CrossRefGoogle Scholar
5.Yan, Z.H., Oehring, M., and Bormann, R., J. Appl. Phys. 72, 2483 (1992).Google Scholar
6.Oehring, M., Yan, Z.H., Klassen, T., and Bormann, R., Phys. Status Solidi 131, 671 (1992).CrossRefGoogle Scholar
7.Park, Y.H. and Hashimoto, H., Mater. Sci. Eng. A181/A182, 1212 (1994).CrossRefGoogle Scholar
8.Radinskly, A.P. and Calka, A., Mater. Sci. Eng. A134, 1376 (1991).Google Scholar
9.Yen, B.K., J. Appl. Phys. 81, 7061 (1997).CrossRefGoogle Scholar
10.Yen, B.K. and Aizawa, T., J. Am. Ceramic Soc. 81, 1953 (1998).CrossRefGoogle Scholar
11.Delogu, F., Monagheddu, M., Mulas, G., Schiffini, L., and Cocco, G., J. Non-Crystal. Solids 232, 383 (1998).CrossRefGoogle Scholar
12.Delogu, F., Monagheddu, M., Mulas, G., Schiffini, L., and Cocco, G., Int. J. Non-Equilib. Process. 11, 235 (1998).Google Scholar
13.Tschakarov, G., Gospodinov, G.G., and Bontschev, Z., J. Solid State Chem. 41, 244 (1982).CrossRefGoogle Scholar
14.Shaffer, G.B. and McCormick, P.G., Scr. Metall. 23, 835 (1989).CrossRefGoogle Scholar
15.Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
16.Popovich, A.A., Reva, V.P., Vasilenko, V.N., and Belous, O.A., Mater. Sci. Forum 88–90, 737 (1992).CrossRefGoogle Scholar
17.Ma, E., Pagan, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
18.Takacs, L., J. Solid State Chem. 125, 75 (1996).CrossRefGoogle Scholar
19.Takacs, L., Mater. Sci. Forum 269–272, 513 (1998).CrossRefGoogle Scholar
20.Merzhanov, A.G., Int. J. SHS 4, 323 (1995).Google Scholar
21.Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).CrossRefGoogle Scholar
22.Merzhanov, A.G., Int. J. SHS 2, 113 (1993).Google Scholar
23.Thadhani, N.N., Prog. Mater. Sci. 37, 117 (1993).CrossRefGoogle Scholar
24.Graham, R.A., Solids under High Shock Compression: Mechanics, Physics and Chemistry (Springer, Berlin, 1993).CrossRefGoogle Scholar
25.Thadhani, N.N., J. Appl. Phys. 76–4, 2129 (1994).CrossRefGoogle Scholar
26.Cao, G., Doppiu, S., Monagheddu, M., Orrù, R., Sannia, M., and Cocco, G., Ind. Eng. Chem. Res. 38, 3218 (1999).CrossRefGoogle Scholar
27.Azatyan, T.S., Mal’tsev, V.M., Merzhanov, A.G., and Seleznev, V.A., Combust. Explos. Shock Waves (Engl. Transl.) 15, 35 (1979).CrossRefGoogle Scholar
28.Varma, A., Rogachev, A.S., Mukasyan, A.S., and Huang, S., Adv. Chem. Eng. 24, 79 (1998).CrossRefGoogle Scholar
29.Wang, L.L. and Munir, Z.A., Metall. Mater. Trans. 26B, 595 (1995).CrossRefGoogle Scholar
30.Deevi, S.C. and Thadhani, N.N., Mater. Sci. Eng. A 192, 604 (1995).CrossRefGoogle Scholar
31.Chen, H.C., Lasalvia, J.C., Nesterenko, V.F., and Meyers, M.A., Acta Mater. 46, 3033 (1998).CrossRefGoogle Scholar
32.Levitas, V.I., Nesterenko, V.F., and Meyers, M.A., Acta Mater. 46–16, 5929 (1998).CrossRefGoogle Scholar
33.Thadhani, N.N., Graham, R.A., Royal, T., Dunbar, E., Anderson, M.U., and Holman, G.T., J. Appl Phys. 82, 1113 (1997).CrossRefGoogle Scholar
34.Vreeland, T. Jr., Montilla, K.L., and Mutz, A.H., J. Appl. Phys. 82, 2840 (1997).CrossRefGoogle Scholar
35.Monagheddu, M., Doppiu, S., and Cocco, G. (to be published).Google Scholar
36.Maglia, F., Anselmi-Tamburini, U., Cocco, G., Monagheddu, M., Bertolina, N., and Munir, Z.A. (to be published).Google Scholar
37.Lutterotti, L., Ceccato, R., Dal Maschio, R., and Pagani, E., Mater. Sci. Forum 87, 278 (1998).Google Scholar
38.Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
39.Mulas, G., Schiffini, L., and Cocco, G., Mater. Sci. Forum 235–238, 15 (1997).Google Scholar
40.Caravati, C., Delogu, F., Cocco, G., and Rustici, M., Chaos 9–1, 219 (1999).CrossRefGoogle Scholar
41.Butyagin, P. Yu. and Pavichev, I.K., React. Solids 1, 361 (1986).CrossRefGoogle Scholar
42.Ruland, W., Acta Crystallogr. 14, 1180 (1961).CrossRefGoogle Scholar
43.Cocco, G., Enzo, S., Schiffini, L., and Battezzati, L., Mater. Sci. Eng. 97, 43 (1988).CrossRefGoogle Scholar
44.Riello, P., Canton, P., and Fagherazzi, G., J. Appl. Crystallogr. 30, (1997).Google Scholar
45. JCPDS, Powder Diffraction Files, International Center for Diffraction Data, Swarthmore, PA.Google Scholar
46.Mulas, G., Loiselle, S., Schiffini, L., and Cocco, G., J. Solid State Chem. 129, 263 (1997).CrossRefGoogle Scholar
47.Kubaschewski, O., Alcock, C.B., and Spencer, P.J., Materials Thermo-Chemistry, 6th ed. (Pergamon Press, Oxford, UK, 1993).Google Scholar
48.Schlesinger, M.E., Chem. Rev. 90, 607 (1990).CrossRefGoogle Scholar
49.Yang, H. and McCormick, P.G., J. Solid State Chem. 110, 136 (1994).CrossRefGoogle Scholar
50.Takacs, L., Mater. Sci. Forum 225–227, 553 (1996).CrossRefGoogle Scholar
51.Munir, Z.A., Ceram. Bull. 67–2, 342 (1988).Google Scholar
52.Rogachev, A.S., Shugaev, V.A., Khomenko, I.O., Varma, A., and Kachelmyer, C.R., Combust. Sci. Technol. 109, 53 (1995).CrossRefGoogle Scholar
53.Shaffer, G.B. and McCormick, P.G., Mater. Sci. Forum 88–90, 779 (1992).CrossRefGoogle Scholar
54.Nickl, J.J. and Sprenger, H., Z. Metallkde. 60, 136 (1969).Google Scholar
55.Johnson, W.L., Prog. Mater. Sci. 30, 81 (1987).CrossRefGoogle Scholar
56.Schwarz, R.B., Mater. Sci. Forum 269–272, 665 (1998).CrossRefGoogle Scholar
57.Streletskii, A.N., Yu Butyagin, P., and Leonov, A.V., Colloid J. 58–2, 248 (1996).Google Scholar
58.Anderson, J.R., Structure of Metallic Catalysts (Academic Press, London, U.K., 1975).Google Scholar
59.Burns, G., Solid State Physics (Academic Press, San Diego, CA, 1985).Google Scholar