Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-12T10:12:53.247Z Has data issue: false hasContentIssue false

Inorganic pigments based on fluorite-type oxynitrides

Published online by Cambridge University Press:  01 June 2006

M. Pérez-Estébanez
Affiliation:
Dpto. Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
R. Pastrana-Fábregas*
Affiliation:
Dpto. Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
J. Isasi-Marín
Affiliation:
Dpto. Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
R. Sáez-Puche
Affiliation:
Dpto. Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Zirconia oxynitride rare-earth-doped pigments were prepared by ammonolysis of the zirconium rare-earth oxides, previously synthesized using the citrate complexation/calcination route. Different coloration has been obtained, the intensity of which is a function of the nitrogen amount in the case of the oxynitrides; in the case of the oxides, both color and intensity depend on the doping amount of rare earth. The obtained phases, Zr(1−x)CexO2, Zr(1−x)RxO(2−x/2)x/2, with R = Eu or Er and Zr(1−x)RxO(2−x/2−3/2y)Nyx/2y/2 (R = Ce, Eu, and Er), have been characterized by x-ray powder diffraction, scanning electron microscopy, and reflectance spectra data. These results show that the phases with minor rare-earth concentration adopt a baddeleyite-type structure, with a monoclinic symmetry, space group P21/c. By increasing the rare-earth doping, the obtained phases crystallize with the fluorite structure with tetragonal (P42/nmc) or cubic symmetry (Fm¯3m). On the other hand, the study of the magnetic properties of the oxides and oxynitrides indicate a paramagnetic behavior, and in the case of the cerium oxide, the nitridation process produces the reduction from Ce4+ to Ce3+. Diffuse reflectance data and CIE-LAB color coordinates suggest that these ceramics based on nitrogen containing zirconia are expected to be promising candidates as new ecological inorganic pigments.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Industrial Inorganics Pigments, edited by Buxhaum, G. (VCH, Weinheim Germany, 1993).Google Scholar
2.Gonzalo, B., Romero, J., Fernandez, F., Torralvo, M.J.: (Bi,R)2O3 (R: Nd, Sm and Dy) oxides as potencial pigments. J. Alloys Compd. 323–324, 372 (2001).CrossRefGoogle Scholar
3.Olazcuaya, R., Polles, G. Le, Kira, A. El., Flem, G. Le, Maestro, P.: Optical properties of Ce1−xPrx O2 powders and their applications to the coloring ceramics. J. Solid State Chem. 71, 570 (1987).CrossRefGoogle Scholar
4.Sanchez, V., Lopèz, E.F., Panizza, M.: Characterization of cubic ceria-zirconia powders by x-ray diffraction and vibrational and electronic spectroscopy. Solid State Sci. 5, 1369 (2003).CrossRefGoogle Scholar
5.Kakihana, M., Kato, S., Yashima, M., Yoshimura, M.: Preparation of tetragonal ZrO2–12 mol% CeO2 and ZrO2–6 mol% YO1.5 solid solutions at reduced temperature by a simple aqueous solution route using citrid acid as a complexant. J. Alloys Compd. 280, 125 (1998).CrossRefGoogle Scholar
6.Cheng, Y.B., Thompson, D.P.: Nitrigen-containing tetragonal zirconia. J. Am. Ceram. Soc. 74, 1135 (1991).CrossRefGoogle Scholar
7.Cheng, Y.B., Thompson, D.P.: Role of anion vacancies in nitrogen-stabilized zirconia. J. Am. Ceram. Soc. 76, 683 (1993).CrossRefGoogle Scholar
8.Lerch, M.: Nitridation of zirconia. J. Am. Ceram. Soc. 79, 2641 (1996).CrossRefGoogle Scholar
9.Clarke, S.J., Michie, C.W., Rosseinsky, M.J.: Structure of Zr2ON2 by neutron powder diffraction: The absence of nitride-oxide ordering. J. Solid State Chem. 146, 399 (1999).CrossRefGoogle Scholar
10.Lerch, M., Wrba, J., Lerch, J.: Synthesis and characterization of oxynitrides in the ZrO2-rich part of the systems Ca–Zr–O–N and Mg–Zr–O–N. J. Solid State Chem. 128, 282 (1997).CrossRefGoogle Scholar
11.Wrba, J., Lerch, M.: Phase relationships in the ZrO2-rich part of the systems Y–Zr–N–O, Ca–Zr–N–O, and Mg–Zr–N–O up to temperatures of 1150 °C. J. Eur. Ceram. Soc. 18, 1787 (1998).CrossRefGoogle Scholar
12.Wendel, J., Lerch, M., Laqua, W.: Novel zirconia-based superionic conductors: The electrical conductivity of Y–Zr–O–N materials. J. Solid State Chem. 142, 163 (1999).CrossRefGoogle Scholar
13.Gutzov, S., Lerch, M.: Optical properties of europium containing zirconium oxynitrides. Opt. Mater. 24, 547 (2003).CrossRefGoogle Scholar
14.Gutzov, S., Lerch, M.: Preparation and optical properties of Zr–Ce–O–N materials. J. Eur. Ceram. Soc. 21, 595 (2001).CrossRefGoogle Scholar
16.Rodríguez-Carvajal, J.: In Abstracts of the Satellite Meeting on Powder Diffraction of XVth Congress of the Int. Union of Crystallography Toulouse, (1990), p. 127.Google Scholar
17.Pastrana, R., Isasi, J., Sáez, R.: Synthesis and characterization of inorganic pigments based on transition metal oxynitrides. J. Mater. Res. (in press).Google Scholar
18.de Rosa-Cruz, E. la, Diaz-Torres, L.A., Rojas, J. Rodriguez: Luminiscence and visible upconversion in nanocrystalline ZrO2:Er3+. Appl. Phys. Lett. 83, 4903 (2003).CrossRefGoogle Scholar