Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T11:59:23.511Z Has data issue: false hasContentIssue false

Influence of CaO–SiO2 ratio on the chemistry of intergranular films in liquid-phase sintered alumina and implications for rate of erosive wear

Published online by Cambridge University Press:  26 November 2012

Rik Brydson
Affiliation:
Department of Materials, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, United Kingdon
Peter C. Twigg
Affiliation:
Department of Materials, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, United Kingdon
Fiona Loughran
Affiliation:
Department of Materials, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, United Kingdon
Frank L. Riley
Affiliation:
Department of Materials, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, United Kingdon
Get access

Abstract

Polycrystalline aluminas sintered with 10 wt% additions of calcium oxide (CaO) and silica (SiO2) in varying molar ratios were fabricated via precipitation, calcination, and hot pressing. Alumina microstructures were analyzed by scanning electron microscopy in terms of their mean grain size, grain size distribution, and grain aspect ratios. High-resolution transmission electron microscopy (HRTEM) showed the presence of an amorphous intergranular glassy phase at two- and three-grain boundaries. The intergranular film width at two-grain boundaries, determined by HRTEM, appeared to vary with the [CaO]:[SiO2] ratio of the additive as did the chemical composition and local chemistry, determined by high-resolution analytical transmission electron microscopy and scanning transmission electron microscopy (using both energy dispersive x-ray and electron energy loss spectroscopy). The factors influencing the erosive wear rate are discussed including the chemistry and associated fracture energy of the intergranular glassy film. Wet erosive wear rates of the densified materials were determined and had a strong dependence on the [CaO]:[SiO2] ratio in the additive.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.O'Donnell, H.L., Readey, M.J., and Kovar, D., J. Am. Ceram. Soc. 78, 849 (1995).CrossRefGoogle Scholar
2.Echeberria, J., Castro, F., and Riley, F.L., in Recrystallization '92, edited by Fuentes, M. and Gil Sevillano, J. (Mater. Sci. Forum 113–115, Trans Tech Publications, Switzerland, 1993), pp. 579584.Google Scholar
3.Raj, R. and Lange, F.F., Acta Metall. 29, 1993 (1981).CrossRefGoogle Scholar
4.Powell-Dogan, C.A. and Heuer, A.H., J. Am. Ceram. Soc. 74, 646 (1991).CrossRefGoogle Scholar
5.Rice, R.W. and Freiman, S.W., J. Am. Ceram. Soc. 64, 350 (1981).CrossRefGoogle Scholar
6.Krell, A., Teresiak, A., and Schlafer, D., J. Eur. Ceram. Soc. 16, 803 (1996).CrossRefGoogle Scholar
7.Ma, Q. and Clarke, D.R., J. Am. Ceram. Soc. 77, 298 (1994).CrossRefGoogle Scholar
8.Evans, A.G., Acta Metall. 26, 1845 (1978).CrossRefGoogle Scholar
9.Galusek, D., Brydson, R., Twigg, P., Riley, F.L., Atkinson, A., and Zhang, Y., J. Am. Cer. Soc. (in press, 2001).Google Scholar
10.Blendell, J.E. and Coble, R.L., J. Am. Ceram. Soc. 65, 174 (1982).CrossRefGoogle Scholar
11.Twigg, P.C., Davidge, R.W., Roberts, S.G., and Riley, F.L., in European Ceramics V, Key Engineering Materials Vols. 132–136, edited by Baxter, J., Cot, L., Fordham, R., Gabsis, V., Hellot, Y., Lefebvre, M., LeDousal, H., Le Sech, A., Naslain, R., and Sevagen, A., (Trans Tech Publications, Switzerland, 1997), Part 3, pp. 15241527.Google Scholar
12.Twigg, P.C., Castro, A., Davidge, R.W., Riley, F.L., and Roberts, S.G., Philos. Mag. A 74, 1245 (1996).CrossRefGoogle Scholar
13.Galusek, D., Twigg, P., and Riley, F.L., Wear 233–235, 588 (1999).CrossRefGoogle Scholar
14.Twigg, P.C., Davidge, R.W., and Riley, F.L., J. Eur. Ceram. Soc. 16, 799 (1996).Google Scholar
15.Hirano, T., Nakahira, A., and Niihara, K., J. Am. Ceram. Soc. 79, 33 (1996).Google Scholar
16.Hansen, S.C. and Phillips, D.S., Philos. Mag. A 47, 209 (1983).CrossRefGoogle Scholar
17.Li, C.W. and Kingery, W.D., in Structure and Properties of MgO and Al2O3 Ceramics, Advances in Ceramics Vol. 10, edited by Kingery, W.D. (Am. Ceram. Soc., Columbus, OH, 1984), pp. 268278.Google Scholar
18.Powell-Dogan, C.A. and Heuer, A.H., J. Am. Ceram. Soc. 73, 3670 (1990).CrossRefGoogle Scholar
19.Kim, D.Y., Wiederhorn, S.M., Hockey, B.J., Handwerker, C.A., and Blendell, J.E., J. Am. Ceram. Soc. 77, 444 (1994).CrossRefGoogle Scholar
20.Swiatnicki, W., Lartigue-Korinek, S., and Laval, J.Y., Acta. Metall. Mater. 43, 795 (1995).CrossRefGoogle Scholar
21.Kaplan, W.D., Müllejans, H., Rühle, M., Rödel, J., and Claussen, N., J. Am. Ceram. Soc. 78, 2841 (1995).CrossRefGoogle Scholar
22.Blonski, S. and Garofalini, S.H., J. Am. Cer. Soc. 80, 1997 (1997).CrossRefGoogle Scholar
23.Brydson, R., Chen, S.C., Riley, F.L., Milne, S.J., Pan, X., and Rühle, M., J. Am. Ceram. Soc. 81, 369 (1998).CrossRefGoogle Scholar
24.Levin, E.M., Robbins, C.R., and McMurdie, H.F., “Phase Diagrams for Ceramists”, No 631 (Am. Ceram. Soc., Columbus, OH, 1964).Google Scholar
25.Miranda-Martinez, M., Davidge, R.W., and Riley, F.L., Wear 172, 41 (1994).CrossRefGoogle Scholar
26.Mendelson, M.I., J. Am. Ceram. Soc. 52, 443 (1969).CrossRefGoogle Scholar
27.Müllejans, H. and Bruley, J., J. Microscopy 180, 12 (1995).CrossRefGoogle Scholar
28.Brytov, I.A. and Romaschenko, Yu.N., Sov. Phys. Solid State 20, 384 (1978).Google Scholar
29.McComb, D.W., Hansen, P.L., and Brydson, R., Microscopy, Microanalysis and Microstructures 2, 561 (1992).CrossRefGoogle Scholar
30.Hansen, P.L., Brydson, R., McComb, D.W., and Richardson, I.G., Microscopy, Microanalysis and Microstructures 5, 173 (1994).CrossRefGoogle Scholar
31.Raj, R., J. Am. Ceram. Soc. 64, 245 (1981).CrossRefGoogle Scholar
32.Golczewski, J.A., Seifert, H.J., and Aldinger, F., Calphad 22, 381 (1998).CrossRefGoogle Scholar
33.Golczewski, J.A., Seifert, H.J., and Aldinger, F., (private communication).Google Scholar
34.Greil, P. and Weiss, J., J. Mater. Sci 18, 1571 (1982).CrossRefGoogle Scholar
35.Park, H.H., Kang, S.J.L., and Yoon, D.N., Metall. Trans. A 17A, 325 (1986).CrossRefGoogle Scholar
36.Chiang, Y.M., Lee, J.R., and Wang, H., in Ceramic Microstrucutres '96, edited by Tomsia, A.P. and Glaeser, A.M., (Plenum Press, New York, 1998), pp. 131147.CrossRefGoogle Scholar
37.Gu, H., Cannon, R.M., and Rühle, M., J. Mater. Res. 13, 376 (1998).CrossRefGoogle Scholar
38.Schmid, H.K., J. Microscopy 194, 192 (1999).CrossRefGoogle Scholar
39.Chiang, Y.M., Wang, H., and Lee, J.R., J. Microscopy 191, 275 (1998).CrossRefGoogle Scholar
40.Clarke, D.R., J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
41.Davidge, R.W. and Riley, F.L., Wear 186–187, 45 (1995).CrossRefGoogle Scholar
42.Jones, R.H., Saenz, N.T., and Schilling, C.H., in Structure and Property Relationships for Interfaces, edited by Walter, J.L., King, A.H., and Tangri, K. (ASM International, 1991), and references therein.Google Scholar