Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T22:27:12.807Z Has data issue: false hasContentIssue false

Huge magnetic hardening ascribed to metastable crystallites during first stages of devitrification of amorphous FeSiBNbSn alloys

Published online by Cambridge University Press:  31 January 2011

V. Cremaschi
Affiliation:
Fac. Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Capital Federal, Argentina
B. Arcondo
Affiliation:
Fac. Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Capital Federal, Argentina
H. Sirkin
Affiliation:
Fac. Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Capital Federal, Argentina
M. Vázquez
Affiliation:
Instituto de Magnetismo Aplicado and Instituto de Ciencia de Materiales, P.O. Box 155, 28230 Las Rozas (Madrid), Spain
A. Asenjo
Affiliation:
Instituto de Magnetismo Aplicado and Instituto de Ciencia de Materiales, P.O. Box 155, 28230 Las Rozas (Madrid), Spain
J. M. Garcia
Affiliation:
Instituto de Magnetismo Aplicado and Instituto de Ciencia de Materiales, P.O. Box 155, 28230 Las Rozas (Madrid), Spain
G. Abrosimova
Affiliation:
Institute of Solid State Physics, RAS 142432, Chernogolovka, Russia
A. Aronin
Affiliation:
Institute of Solid State Physics, RAS 142432, Chernogolovka, Russia
Get access

Abstract

A huge magnetic hardening (i.e., increase of coercivity from 5 A/m up to 4.4 kA/m) was reported for Fe75Si11B10Nb3Sn alloy ribbons during their very first stage of crystallization from an initial amorphous state. In contrast, Fe78Si11B10Sn1 showed no such hardening, while a moderate hardening was observed for Fe76Si11B10Nb3. This outstanding change was ascribed to the generation of metastable nanocrystallites that disappear upon heating at higher temperatures. A noticeable softening was then recovered (with a decrease of coercivity down to 0.8 kA/m) once the optimum homogeneous conventional nanocrystalline phase was achieved. Both structure and magnetic evolutions are followed by different techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.O'Handley, R.C., in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworths, London, United Kingdom, 1983), p. 257.CrossRefGoogle Scholar
2.Köster, U. and Herold, U., in Glassy Metals I, edited by Gün-therodt, H.J. and Beck, H. (Springer, Berlin, Germany, 1981), p. 225.CrossRefGoogle Scholar
3.Yoshizawa, Y., Oguma, S., and Yamaguchi, K., J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
4.Suzuki, K., Kataoka, N., Inoue, A., Makino, A., and Masumoto, T., Mater. Trans., JIM 31, 743 (1990).CrossRefGoogle Scholar
5.Herzer, G., Mater. Sci. Eng. A 133, 1 (1991).CrossRefGoogle Scholar
6.Polak, Ch., Knobel, M., Grössinger, R., and Sato-Turtelli, R., J. Magn. Magn. Mater. 134, 1 (1994).Google Scholar
7.Vázquez, M., Marin, P., Davies, H.A., and Olofinjana, A.O., Appl. Phys. Lett. 64, 394 (1994).CrossRefGoogle Scholar
8.Moya, J., Vázquez, M., Cremasci, V., Arcondo, B., and Sirkin, H., Nanostruct. Mater. 8, 611 (1997).Google Scholar
9.Hernando, A., Marin, P., Vázquez, M., Barandiaran, J.M., and Herzer, G., Phys. Rev. B 58, 366 (1998).Google Scholar
10.Hernando, A., Vázquez, M., Kulik, T., and Prados, C., Phys. Rev. B 51, 3581 (1995).CrossRefGoogle Scholar
11.Müller, M., Mattern, N., and Illgen, J., J. Magn. Magn. Mater. 112, 263 (1992).CrossRefGoogle Scholar
12.Vázquez, M., Moya, J., Cremasci, V., Arcondo, B., and Sirkin, H., in Recent Research Developments in Nanostructures, edited by Pandalai, S.G. (Research Signpost, Trivandrum, India, 1999), p. 43.Google Scholar
13.Cremaschi, V., Arcondo, B., Vázquez, M., and Sirkin, H., Hyperfine Interact. 122, 155 (1999).CrossRefGoogle Scholar
14.Moya, J., Vázquez, M., Cremaschi, V., Arcondo, B., and Sirkin, H., Hyperfine Interact. 17, 89 (1997).Google Scholar
15.Marín, P., Vázquez, M., Olofinjana, A.O., and Davies, H.A., Nano-struct. Mater. 10, 299 (1998).Google Scholar
16.Asenjo, A., García, J.M., García, D., Hernando, A., Vázquez, M., Caro, P.A., Ravelosona, D., Cebollada, A., and Briones, F., J. Magn. Magn. Mater. 196–197, 23 (1999).CrossRefGoogle Scholar
17.Müller, M., Herzer, G., Mattern, N., Grahi, H., Schnell, B., Rebold, M., and Reuter, H., J. Phys. IV 8, Pr–1287 (1998).Google Scholar
18.Gómez-Polo, C., Holzer, D., Multigner, M., Navarro, E., Agudo, P., Hernando, A., Vázquez, M., Sassik, H., and Grössinger, R., Phys. Rev. B 53, 339 (1996).Google Scholar
19.Arcas, J., Hernando, A., Barandiarán, J.M., Prados, C., Vázquez, M., Marcín, P., and Neuweiler, A., Phys. Rev. B 58, 5193 (1998).CrossRefGoogle Scholar
20.Marcín, P., Vázquez, M., and Hernando, A., J. Magn. Magn. Mater. 196–197 (1999).Google Scholar
21.Herzer, G., IEEE Trans. Magn. Mater. 26, 1397 (1990).CrossRefGoogle Scholar
22.Aronin, A., Abrosimova, G., Zverkova, I., Lang, D., and Luck, R., J. Non-Cryst. Solids 208, 139 (1996).CrossRefGoogle Scholar
23.Khan, Y. and Sostarich, M., Z. Metallk. 72, 266 (1981).Google Scholar