Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-03T11:23:42.477Z Has data issue: false hasContentIssue false

High-voltage Transmission Electron Microscope in situ Study on Dislocation Motion in Decagonal Al–Ni–Co Single Quasicrystals

Published online by Cambridge University Press:  01 July 2005

Martin Bartsch
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
Peter Schall
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Michael Feuerbacher
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Ulrich Messerschmidt*
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
*
b)Address all correspondence to this author. e-mail: [email protected] This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html.
Get access

Abstract

Decagonal single quasicrystals of the composition Al70Ni15Co15 have been deformed in situ in a high-voltage transmission electron microscope at 730 °C along the 10-fold periodic axis to directly observe the dislocation motion. The deformation is carried by stress-assisted climb of dislocations with periodic Burgers vectors. These dislocations may also glide and move by a combination of glide and climb. Dislocations with Burgers vectors with components in the periodic and quasiperiodic directions probably move under the action of a chemical force. The observations are interpreted by a model established by P. Schall et al. under consideration of the activation parameters of macroscopic deformation and by analogies with the behavior of icosahedral quasicrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wollgarten, M., Beyss, M., Urban, K., Liebertz, H. and Köster, U.: Direct evidence of plastic deformation of quasicrystals by means of a dislocation mechanism. Phys. Rev. Lett. 71, 549 (1993).CrossRefGoogle ScholarPubMed
2Wollgarten, M., Bartsch, M., Messerschmidt, U., Feuerbacher, M., Rosenfeld, R., Beyss, M. and Urban, K.: In-situ observation of dislocation motion in icosahedral Al–Pd–Mn single quasicrystals. Philos. Mag. Lett. 71, 99 (1995).CrossRefGoogle Scholar
3Feuerbacher, M., Bartsch, M., Grushko, G., Messerschmidt, U. and Urban, K.: Plastic deformation of decagonal Al–Ni–Co quasicrystals. Philos. Mag. Lett. 76, 369 (1997).CrossRefGoogle Scholar
4Edagawa, K., Arai, Y., Hashimoto, T. and Takeuchi, S.: Plastic anisotropy in an Al–Cu–Co decagonal quasicrystals. Mater. Trans. JIM 39, 863 (1998).CrossRefGoogle Scholar
5Edagawa, K., Ohta, S., Takeuchi, S., Kabutoya, E., Guo, J.Q. and Tsai, A-P.: Plasticity of Al–Ni–Co decagonal single quasicrystals. Mater. Sci. Eng. A 294–296, 748 (2000).CrossRefGoogle Scholar
6Schall, P., Feuerbacher, M. and Urban, K.: Plastic deformation behaviour of decagonal Al70Ni15Co15 single quasicrystals. Philos. Mag. Lett. 81, 339 (2001).CrossRefGoogle Scholar
7Schall, P., Feuerbacher, M. and Urban, K.: Plastic deformation of decagonal Al37Ni10Co17 single quasicrystals. Philos. Mag. 84, 705 (2004).CrossRefGoogle Scholar
8Zhang, Z. and Urban, K.: Transmission electron-microscope observation of dislocations and stacking faults in a decagonal Al–Cu–Co alloy. Philos. Mag. Lett. 60, 97 (1989).CrossRefGoogle Scholar
9Schall, P., Feuerbacher, M. and Urban, K.: Dislocations and dislocation reactions in decagonal Al–Ni–Co quasicrystals. Phys. Rev. B. 69, 134105 (2004).CrossRefGoogle Scholar
10Schall, P., Feuerbacher, M. and Urban, K. Plasticity of decogonal Al37Ni10Co17 quasicrystals, in Quasicrystals 2003—Preparation, Properties and Applications, edited by Belin-Ferré, E., Feuerbacher, M., Ishii, Y, and Sordelet, D.J. (Mater. Res. Soc. Symp. Proc. 805, Warrendale, PA, 2004), LL 5.5, p. 175.Google Scholar
11Caillard, D., Mompiou, F., Bresson, L. and Gratias, D.: Dislocation climb in icosahedral quasicrystals. Scripta Mater. 49, 11 (2003).CrossRefGoogle Scholar
12Mompiou, F., Caillard, D. and Feuerbacher, M.: In-situ observation of dislocation motion in icosahedral Al–Pd–Mn quasicrystals. Philos. Mag. 84, 2777 (2004).CrossRefGoogle Scholar
13Mompiou, F., Bresson, L., Cordier, P. and Caillard, D.: Dislocation climb and low-temperature plasticity of an Al–Pd–Mn quasicrystal. Philos. Mag. 83, 3133 (2003).CrossRefGoogle Scholar
14Messerschmidt, U., Bartsch, M., Geyer, B. and Ledig, L. in Quasicrystals, Structure and Physical Properties, edited by Trebin, H-R. (Wiley-VCH, Weinheim, Germany, 2003), p. 462.Google Scholar
15Messerschmidt, U. and Bartsch, M.: Mechanisms of plastic deformation of icosahedral quasicrystals. Scripta Mater. 49, 33 (2003).CrossRefGoogle Scholar
16Messerschmidt, U., Ledig, L. and Bartsch, M.: Temperature dependence of dislocation processes during plastic deformation of i-Al–Pd–Mn single quasicrystals. J. Non-Cryst. Solids 334, 436 (2004).CrossRefGoogle Scholar
17Messerschmidt, U. and Bartsch, M.: High-temperature straining stage for in situ experiments in the high-voltage electron microscope. Ultramicroscopy 56, 163 (1994).CrossRefGoogle Scholar
18Steurer, W., Haibach, T., Zhang, B., Kek, S. and Lück, R.: The structure of decagonal Al70Ni15Co15. Acta Crystallogr. Sect. B: Struct. Sci. 49, 661 (1993).CrossRefGoogle Scholar
19Mukhopadhyay, N.K., Weatherly, G.C. and Sastry, G.V.S.: On the analysis of diffuse intensity and striation contrast in electron microscopy images of Al–Cu–Co–Si decagonal phases. Mater. Sci. Eng. A 294–296, 135 (2000).CrossRefGoogle Scholar
20Feuerbacher, M. and Schall, P.: Plastic behaviour of decagonal Al–Ni–Co single quasicrystals. Scripta Mater. 49, 25 (2003).CrossRefGoogle Scholar
21Coujou, A., Lours, P., Roy, N.A., Caillard, D. and Clement, N.: Determination of the local tensile axis direction in a TEM in situ strained γ′-single crystals—A finite element approach. Acta Metall. Mater. 38, 825 (1990).CrossRefGoogle Scholar
22Stohr, J.F. and Poirier, J.P.: Electron-microscope study of pyramidal slip [1122] [1123] in magnesium. Philos. Mag. 25, 1313 (1972).CrossRefGoogle Scholar
23Edelin, G. and Poirier, J.P.: Study of dislocation climb by means of diffusional creep experiments in magnesium. 1. Deformation mechanism. Philos. Mag. 28, 1203 (1973).CrossRefGoogle Scholar
24Friedel, J.: Dislocations (Pergamon Press, Oxford, U.K., 1964).Google Scholar
25Mehrer, H. and Galler, R.: Vacancy-mediated diffusion in quasicrystalline alloys. J. Alloys Compd. 342, 296 (2002).CrossRefGoogle Scholar
26Weller, M., Damson, B. and Feuerbacher, M. Defects and diffusion in d-AlNiCo-quasicrystals—Application of mechanical spectroscopy. (unpublished, 2004).CrossRefGoogle Scholar
27Schall, P., Feuerbacher, M., and Urban, K.: Plasticity of decagonal Al–Ni–Co quasicrystals (unpublished).Google Scholar
28Feuerbacher, M., Metzmacher, C., Wollgarten, M., Urban, K., Baufeld, B., Bartsch, M. and Messerschmidt, U.: The plasticity of icosahedral quasicrystals. Mater. Sci. Eng. A 233, 103 (1997).CrossRefGoogle Scholar
29Messerschmidt, U., Bartsch, M., Feuerbacher, M., Geyer, B. and Urban, K.: Friction mechanism of dislocation motion in icosahedral Al–Pd–Mn quasicrystals. Philos. Mag. A 79, 2123 (1999).CrossRefGoogle Scholar
30Messerschmidt, U., Häussler, D., Bartsch, M., Geyer, B., Feuerbacher, M. and Urban, K.: Microprocesses of the plastic deformation of icosahedral Al–Pd–Mn single quasicrystals. Mater. Sci. Eng. A 294–296, 757 (2000).CrossRefGoogle Scholar