Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:50:28.406Z Has data issue: false hasContentIssue false

Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature

Published online by Cambridge University Press:  31 January 2011

H. Sumiya*
Affiliation:
Electronics & Materials R&D Laboratories, Sumitomo Electric Industries, Itami 664-0016, Japan
T. Irifune
Affiliation:
Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Mechanical properties of high-purity nano-polycrystalline diamonds synthesized by direct conversion from graphite and various non-graphitic carbons under static high pressures and high temperatures were investigated by microindentation testing with a Knoop indenter and observation of microstructures around the indentations. Results of indentation hardness tests using a superhard synthetic diamond Knoop indenter showed that the polycrystalline diamond synthesized from graphite at ⩾15 GPa and 2300–2500 °C (consisting of fine grains 10–30 nm in size and layered crystals) has very high Knoop hardness (Hk ⩾ 110 GPa), whereas the hardness of polycrystalline diamonds synthesized from non-graphitic carbons at ⩾15 GPa and below 2000 °C (consisting only of single-nano grains 5–10 nm in size) are significantly lower (Hk = 70 to 90 GPa). Microstructure observations beneath the indentations of these nano-polycrystalline diamonds suggest that the existence of a lamellar structure and the bonding strength of the grain boundary play important roles in controlling the hardness of the polycrystalline diamond.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Irifune, T., Kurio, A., Sakamoto, S., Inoue, T.Sumiya, H.: Ultrahard polycrystalline diamond from graphite. Nature 421, 599 2003CrossRefGoogle ScholarPubMed
2Sumiya, H., Irifune, T., Kurio, A., Sakamoto, S.Inoue, T.: Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J. Mater. Sci. 39, 445 2004CrossRefGoogle Scholar
3Sumiya, H.Irifune, T.: Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion. Diamond Relat. Mater. 13, 1771 2004CrossRefGoogle Scholar
4Naka, S., Horii, K., Takeda, Y.Hanawa, T.: Direct conversion of graphite to diamond under static pressure. Nature 259, 38 1976CrossRefGoogle Scholar
5Onodera, A., Higashi, K.Irie, Y.: Crystallization of amorphous carbon at high static pressure and high temperature. J. Mater. Sci. 23, 422 1988CrossRefGoogle Scholar
6Yusa, H., Takemura, K., Matsui, Y., Morishima, H., Watanabe, K., Yamawaki, H.Aoki, K.: Direct transformation of graphite to cubic diamond observed in a laser-heated diamond anvil cell. Appl. Phys. Lett. 72, 1843 1998CrossRefGoogle Scholar
7Yusa, H.: Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diamond Relat. Mater. 11, 87 2002CrossRefGoogle Scholar
8Dubrovinskaia, N., Dubrovinsky, L., Langenhorst, F., Jacobsen, S.Liebske, C.: Nanocrystalline diamond synthesized from C60. Diamond Relat. Mater. 14, 16 2005CrossRefGoogle Scholar
9Sumiya, H., Yusa, H., Inoue, T., Ofuji, H.Irifune, T.: Conditions and mechanism of formation nano-polycrystalline diamonds directly from graphite and non-graphitic carbon at high-pressure and high-temperature. J. High Press. Res. 26, 63 2006CrossRefGoogle Scholar
10Kawai, N.Endo, S.: The generation of ultra hydrostatic pressure by a split sphere apparatus. Rev. Sci. Instrum. 41, 1178 1970CrossRefGoogle Scholar
11Irifune, T.Sumiya, H.: Nature of polycrystalline diamond synthesized by direct conversion of graphite using Kawai-type multianvil apparatus. New Diamond Frontier Carbon Technol. 14, 313 2004Google Scholar
12Sumiya, H.: Super-hard diamond indenter prepared from high-purity synthetic diamond crystal. Rev. Sci. Instrum. 76, 026112 2005CrossRefGoogle Scholar
13Sumiya, H., Toda, N.Satoh, S.: Mechanical properties of synthetic type IIa diamond crystal. Diamond Relat. Mater. 6, 1841 1997CrossRefGoogle Scholar
14Sumiya, H., Yamaguch, K.Ogata, S.: Deformation microstructure of high-quality synthetic diamond crystal subjected to Knoop indentation. Appl. Phys. Lett. 88, 161904 2006CrossRefGoogle Scholar
15Dubrovinskaia, N., Dubrovinsky, L., Crichton, W., Langenhorst, F.Richter, A.: Aggregated diamond nanorods, the densest and least compressible form of carbon. Appl. Phys. Lett. 87, 083106 2005CrossRefGoogle Scholar
16Dubrovinskaia, N., Dub, S.Dubrovinsky, L.: Super wear resistance of aggregated diamond nanorods. Nano Lett. 6, 824 2006CrossRefGoogle Scholar
17Veprek, S.: Nanostructured superhard materials in Handbook of Ceramic Hard Materials edited by R. Riedel, Wiley-VCH Vch Verlagsgesellschaft Mbh 2000 104CrossRefGoogle Scholar
18Yip, S.: The strongest size. Nature 391, 532 1998CrossRefGoogle Scholar