Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:32:21.775Z Has data issue: false hasContentIssue false

Growth, structure, and mechanical properties of transition metal carbide superlattices

Published online by Cambridge University Press:  31 January 2011

H. Högberg
Affiliation:
Department of Inorganic Chemistry, The Ångström Laboratory, Uppsala University, P.O. Box 538, SE-75121 Uppsala, Sweden
J. Birch
Affiliation:
Department of Physics, Thin Film Physics Division, Linköping University, SE-58183 Linköping, Sweden
M. Odén
Affiliation:
Department of Mechanical Engineering, Division of Engineering Materials, Linköping University, SE-58183 Linköping, Sweden
J-O. Malm
Affiliation:
National Center of HREM, Department of Inorganic Chemistry 2, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
L. Hultman
Affiliation:
Department of Physics, Thin Film Physics Division, Linköping University, SE-58183 Linköping, Sweden
U. Jansson
Affiliation:
Department of Inorganic Chemistry, The Ångström Laboratory, Uppsala University, P.O. Box 538, SE-75121 Uppsala, Sweden
Get access

Abstract

Superlattices of TiC/VC have been deposited on MgO(001) substrates by simultaneous direct current metal magnetron sputtering and C60 evaporation in the temperature range 200–800 °C. Thin superlattices (approximately 1000 Å) deposited at 400 °C exhibited an epitaxial growth with abrupt interfaces while films deposited at 200 °C showed a partial loss of epitaxy. At 800 °C roughening by surface diffusion started to degrade the superlattices and introduced a columnar microstructure. A loss of epitaxy was observed for thicker (>7000 Å) superlattice films deposited at 400 °C. The results suggest that this observation is due to difficulties in depositing epitaxial VC.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J-E., Markert, L.C., and Greene, J.E., J. Appl. Phys. 62, 481 (1987).CrossRefGoogle Scholar
2.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7, 901 (1992).CrossRefGoogle Scholar
3.Mirkarimi, P.B., Hultman, L., and Barnett, S.A., Appl. Phys. Lett. 57, 2654 (1990).CrossRefGoogle Scholar
4.Barnett, S.A., in Physics of Thin Films, edited by Francombe, M.H. and Vossen, V.L. (Academic Press, Boston, MA, 1993), Vol. 17,p. 1.Google Scholar
5.Norin, L., Lu, J., Malm, J-O., and Jansson, U., J. Mater. Res. 14, 1589 (1999).CrossRefGoogle Scholar
6.Norin, L., Högberg, H., Lu, J., Malm, J-O., and Jansson, U., Appl. Phys. Lett. 73, 2574 (1998).CrossRefGoogle Scholar
7.Högberg, H., Malm, J-O., Talyzin, A., Norin, L., Lu, J., and Jansson, U., J. Electrochem. Soc. 147, 3361 (2000).CrossRefGoogle Scholar
8.Högberg, H., Birch, J., Johansson, M.P., Hultman, L., and Jansson, U., J. Mater. Res. 16, 633 (2001).CrossRefGoogle Scholar
9.Serbena, F.C., Williams, W.S., and Roberts, S.G., J. Hard Mater. 6, 17 (1995).Google Scholar
10.Hultman, L., Shinn, M., Mirkarimi, P.B., and Barnett, S.A., J. Cryst. Growth 135, 309 (1994).CrossRefGoogle Scholar
11.Högberg, H., Birch, J., Johansson, M.P., Jansson, U., and Hultman, L., J. Cryst. Growth 219, 237 (2000).CrossRefGoogle Scholar
12.de Boer, D.K.G., Phys. Rev. B. 44, 498 (1991).CrossRefGoogle Scholar
13.Schuller, K., Phys. Rev. Lett. 44, 1597 (1980).CrossRefGoogle Scholar
14.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
15.Ljungcrantz, H., Odén, M., Hultman, L., Greene, J.E., and Sundgren, J-E., J. Appl. Phys. 80, 6725 (1996).CrossRefGoogle Scholar
16.Shin, C-S., Gall, D., Desjardins, P., Vailionis, A., Kim, H., Petrov, I., Greene, J.E., and Odén, M., Appl. Phys. Lett. 75, 3808 (1999).CrossRefGoogle Scholar
17.Odén, M., Ljungcrantz, H., and Hultman, L., J. Mater. Res. 12, 2134 (1997).CrossRefGoogle Scholar
18.Chermant, J.L., Delavignette, P., and Deschanvres, A., J. LessCommon Met. 21, 89 (1970).CrossRefGoogle Scholar
19.Török, E., Perry, A.J., Chollet, L., and Sproul, W.D., Thin Solid Films 153, 37 (1987).CrossRefGoogle Scholar
20.Kim, J.O., Achenbach, J.D., Mirkarimi, P.B., and Barnett, S.A., Phys. Rev. B 48, 1726 (1993).CrossRefGoogle Scholar
21.Zhang, X., Comins, J.D., Every, A.G., and Stoddart, P.R., Int. J. Refract. Met. Hard Mater. 16, 303 (1998).CrossRefGoogle Scholar
22.Ettmayer, P. and Lengauer, W., in Encyclopediaof Inorganic Chemistry, edited King, R.B. (J. Wiley & Sons, Chichester, U.K., 1994), Vol. 12, p. 1.Google Scholar
23.Pacheco, S. and Mura, T., J. Mech. Phys. Solids 17, 163 (1969).CrossRefGoogle Scholar