Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-13T14:48:34.271Z Has data issue: false hasContentIssue false

First-principles study of initial stage of Ni thin-film growth on a TiO2 (110) surface

Published online by Cambridge University Press:  31 January 2011

P. L. Cao
Affiliation:
Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China, and Department of Physics & Astronomy and Materials Research Center, Northwestern University, Evanston, Illinois 60208
D. E. Ellis
Affiliation:
Department of Physics & Astronomy and Materials Research Center, Northwestern University, Evanston, Illinois 60208
V. P. Dravid
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

The bonding structure and binding character for the initial stage of thin-film growth of Ni on a rutile (110) surface were studied using first-principles density functional theory. Our results show that, in the first monolayer, Ni atoms are preferentially adsorbed on top of bridging oxygen atoms and upon secondary surface oxygen. The bond strength between Ni adatom and substrate is much stronger than that between Ni adatoms. About 0.3 electrons are transferred from Ni atoms to substrate in low coverage; the adsorption of additional Ni atoms on neighboring sites decreases this transfer. In addition to the ionic bonding component, some covalent character is found in the Ni adatom–substrate bond.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sutton, A.P. and Balluffi, R.W., Interfaces in Crystalline Materials (Oxford Clarendon Press, UK, 1995).Google Scholar
2.Wolf, D. and Yip, S., Materials Interfaces (Chapman and Hall, NY, 1992).Google Scholar
3.Diebold, U., Pan, J.M., and Madey, T.E., Surf. Science 331/333, 845 (1995).CrossRefGoogle Scholar
4.Diebold, U., Pan, J.M., and Madey, T.E., Surf. Sci. 287/288, 896 (1993).CrossRefGoogle Scholar
5.Haller, G.L. and Resasco, D.E., Advan. Catal. 36, 173 (1989).Google Scholar
6.Schierbaum, K.D., Xu, W.X., Fischer, S., and Gopel, W., in Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, edited by Umbach, E. and Freund, H.J. (Springer, Berlin, 1993) p. 268.CrossRefGoogle Scholar
7.Schierbaum, K.D., Fischer, S., Wincott, P., Hardman, P., Dhanak, U., Jones, G., and Thornton, G., Surf. Sci. 391, 196 (1997).CrossRefGoogle Scholar
8.Uchikoshi, T., Sakka, Y., Ohno, S., Okuyama, H., and Yoshihara, K., Surf. Sci. 287/288, 1082 (1993).CrossRefGoogle Scholar
9.Bartholomew, C.H., Pannell, R.B., and Butler, J.I., J. Catal. 65, 335 (1980).CrossRefGoogle Scholar
10.Muller, D.A., Singh, D.J., and Silcox, J., Phys. Rev. B 57, 8181 (1998).CrossRefGoogle Scholar
11.Wu, M.C. and Moller, P.J., Surf. Sci. 279, 23 (1992).CrossRefGoogle Scholar
12.Onishi, H., Aruga, T., Egawa, C., and Iwasawa, Y., Surf. Sci. 233, 261 (1990).CrossRefGoogle Scholar
13.Bourgeois, S., LeSeigneur, P., Perdereau, M., Chandesris, D., LeFevre, P., and Magnan, H., Thin Solid Films 304, 267 (1997).CrossRefGoogle Scholar
14.Espinos, J.P., Fernandez, A., Gonzaler-Elipe, A.R., and Munuera, G., Surf. Sci. 251/252, 1012 (1991).CrossRefGoogle Scholar
15.Miller, D.A., Shashkov, D.A., Benedek, R., Yang, L.H., Silcox, J., and Seidman, D.N., Phys. Rev. Lett. 80, 4741 (1998).CrossRefGoogle Scholar
16.Mayer, J., Gutekunst, G., Mobus, G., Dura, J., Flynn, C.P., and Ruhle, M., Acta Metall. Mater. 40, 217 (1992).CrossRefGoogle Scholar
17.Ellis, D.E., Density Functional Theory of Molecules, Clusters, and Solids (Kluwer, Dordrecht, 1995).Google Scholar
18.Ellis, D.E., Benesh, G.A., and Byrom, E., Phys. Rev. B 16, 3308 (1977).CrossRefGoogle Scholar
19.Wang, L., Liu, J., and Cowley, J.M., Surf. Sci. 302, 141 (1994).CrossRefGoogle Scholar
20.Charlton, G., Howes, P.B., Nicklin, C.L., Steadman, P., Tayler, J.S.G, Muryn, C.A., Harte, S.P., Mercer, J., McGrath, R., Norman, D., Turner, T.S., and Thornton, G., Phys. Rev. Lett. 78, 495 (1997).CrossRefGoogle Scholar
21.Hird, B. and Armstrong, R.A., Surf. Sci. 385, L1023 (1997).CrossRefGoogle Scholar
22.Ramamoorthy, M., Vanderbilt, D., and King-Smith, R.D., Phys. Rev. B 49, 16721 (1994).CrossRefGoogle Scholar
23.Reinhardt, P. and Hess, B.A., Phys. Rev. B 50, 12015 (1994).CrossRefGoogle Scholar
24.Vogtenhuber, D., Podloucky, R., Neckel, A., Stenneman, S.G., and Freeman, A.J., Phys. Rev. B 49, 2099 (1994).CrossRefGoogle Scholar
25.Bates, S.P., Kresse, G., and Gillan, M.J., Surf. Sci. 385, 396 (1997).CrossRefGoogle Scholar
26.Gulseren, O., James, R., and Bullett, D.W., Surf. Sci. 377/379, 150 (1997).CrossRefGoogle Scholar
27.Parr, R.G. and Yang, W., Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).Google Scholar
28.Ellis, D.E. and Painter, G.S., Phys. Rev. B 2, 2887 (1970).CrossRefGoogle Scholar
29.Cao, P-L., Ellis, D.E., and Freeman, A.J., Phys. Rev. B 25, 2124 (1982).CrossRefGoogle Scholar
30.Finnis, M.W., J. Phys. Condens. Matter 8, 5811 (1996).CrossRefGoogle Scholar
31.Lathiotakis, N.N., Andriotis, A.N., Menon, M., and Connolly, J., J. Chem. Phys. 104, 992 (1996).CrossRefGoogle Scholar
32.Upton, T.H. and Goddard, W.A., CRC Crit. Rev. Solid State Mater. Sci. 9, 261 (1981).CrossRefGoogle Scholar
33.Ellis, D.E., and Guenzburger, D., Adv. Quantum Chem. 34, 51 (1999).CrossRefGoogle Scholar
34.Ellis, D.E., Guo, J., and Lam, D.J., Rev. Solid State Sci. 5, 227 (1991).Google Scholar