Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T22:46:07.637Z Has data issue: false hasContentIssue false

Enhancement of the 1.31-μm emission properties of Dy3+-doped Ge–Ga–S glasses with the addition of alkali halides

Published online by Cambridge University Press:  31 January 2011

Yong Beom Shin
Affiliation:
Bio-Information Sensing Team/Human Information Technology Department, Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), 161 Kajong-Dong, Yusong-Gu, Taejun, 305-350, South Korea
Jong Heo
Affiliation:
Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
Hyoun Soo Kim
Affiliation:
Applied Optics R&D Group, Samsung Electronics Co. Ltd., Suwon, 440–600, Korea
Get access

Abstract

Alkali halides such as KBr, KI, CsBr, and CsI were added to Dy3+-doped Ge–Ga–S glasses, and their effects on the 1.31-μm emission property were investigated. The intensities of the 1.31-μm emission (6F11/2 · 6H9/26H15/2) increased at the expense of the 1.75-μm emission intensity (6H11/26H15/2) with the alkali halide addition. The lifetimes of the 1.31-μm emission level also increased as much as 35 times from 38 μs for Ge–Ga–S glass to 1320 μs for the glass containing 10 mol% CsBr. These enhancements occurred only when the ratio of MX (M = K, Cs; X = Br, I)/Ga was equal to or larger than unity. Raman spectra of Ge–Ga–S–CsBr glasses indicated the formation of [GaS3/2Br] complexes, which provide the preferred sites for Dy3+. Due to this new local environment of Dy3+, the multiphonon relaxation rates from the Dy3+:6F11/2 · 6H9/2 level decreased by approximately four orders of magnitude. The enhancement in the 1.31-μm emission properties with alkali halide addition supports the potentials of these glasses as hosts for the Dy3+-doped fiber-optic amplifiers.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ohishi, Y., Kanamori, T., Kitakawa, T., Takahashi, S., Snitzer, E., and Sigel, G.H. Jr., Opt. Lett. 16, 1747 (1991).CrossRefGoogle Scholar
2.Yamada, M., Kanamori, T., Ohishi, Y., Shimizu, M., Terunuma, Y., Sato, S., and Sudo, S., IEEE Photon. Tech. Lett. 9, 321 (1997).CrossRefGoogle Scholar
3.Itoh, K., Yanagita, H., Tawarayama, H., Yamanaka, K., Ishikawa, E., Okada, K., Aoki, H., Matsumoto, Y., Shirakawa, A., Matsuoka, Y., and Toratani, H., J. Non-Cryst. Solids 256&257, 1 (1999).CrossRefGoogle Scholar
4.Wei, K., Machewirth, D.P., Wenzel, J., Snitzer, E., and Sigel, G.H. Jr., Opt. Lett. 19, 904 (1994).CrossRefGoogle Scholar
5.Tanabe, S., Hanada, T., Watanabe, M., Hayashi, T., and Soga, N., J. Am. Ceram. Soc. 78, 2917 (1995).CrossRefGoogle Scholar
6.Schaafsma, D.T., Shaw, L.B., Cole, B., Sanghera, J.S., and Agarwal, I.D., IEEE Photon. Technol. Lett. 10, 1548 (1998).CrossRefGoogle Scholar
7.Wei, K., Machewirth, D.P., Wenzel, J., Snitzer, E., and Sigel, G.H. Jr., J. Non-Cryst. Solids 182, 257 (1995).CrossRefGoogle Scholar
8.Heo, J. and Shin, Y.B., J. Non-Cryst. Solids 196, 162 (1996).CrossRefGoogle Scholar
9.Judd, B.R., Phys. Rev. 127, 750 (1962).CrossRefGoogle Scholar
10.Ofelt, G.S., J. Chem. Phys. 37, 511 (1962).CrossRefGoogle Scholar
11.Inokuti, M. and Hirayama, F., J. Chem. Phys. 43, 1978 (1965).CrossRefGoogle Scholar
12.Elliot, S.R., Physics of Amorphous Materials, 2nd ed. (Longman Scientific & Technical, New York, 1990), p. 328.Google Scholar
13.Zou, X. and Toratani, H., J. Non-Cryst. Solids 195, 113 (1996).CrossRefGoogle Scholar
14.Shin, Y.B. and Heo, J., J. Non-Cryst. Solids 253, 23 (1999).CrossRefGoogle Scholar
15.DiBartolo, B., Optical Interactions in Solids (Wiley, New York, 1968), pp. 404411.Google Scholar
16.Miniscalco, W.J. and Quimby, R.S., Opt. Lett. 16, 258 (1991).CrossRefGoogle Scholar
17.Lentes, F-T., in The Properties of Optical Glasses, edited by Bach, H. and Neuroth, N. (Springer-Verlag, Berlin, Heidelberg, New York, 1995), p. 24.Google Scholar
18.Reisfeld, R. and Jørgensen, C.K., in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneider, K.A. Jr. and Eyring, L. (Elsevier Science, Amsterdam, the Netherlands, 1987), Vol. 9, p. 41.Google Scholar
19.Miyakawa, T. and Dexter, D.L., Phys. Rev. B. 1, 2961 (1970).CrossRefGoogle Scholar
20.Heo, J., Yoon, J.M., and Ryou, S.Y., J. Non-Cryst. Solids 238, 115 (1998).CrossRefGoogle Scholar
21.Tverjanovich, A., Tverjanovich, Yu.S., and Loheider, S., J. Non-Cryst. Solids 208, 49 (1996).CrossRefGoogle Scholar
22.Tverjanovich, Yu.S., Nedoshovenko, E.G., Aleksandrov, V.V., Turkina, E.Yu., Tverjanovich, A.S., and Sokolov, I.A., Glass Phys. Chem. 22, 9 (1996).Google Scholar
23.Shin, Y.B., Heo, J., and Kim, H.S., Chem. Phys. Lett. 317, 637 (2000).CrossRefGoogle Scholar