Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T00:46:24.309Z Has data issue: false hasContentIssue false

Dependence of the Au/Ni/Si/Ni Contact Properties on the Si-layer Thickness and the Annealing Temperature in p-type GaN Epilayers

Published online by Cambridge University Press:  31 January 2011

S.J. Yang
Affiliation:
Department of Physics, Dongguk University, 3–26, Pildong, Chungku, Seoul 100–715, Korea
T.W. Kang*
Affiliation:
Department of Physics, Dongguk University, 3–26, Pildong, Chungku, Seoul 100–715, Korea
T.W. Kim
Affiliation:
Department of Physics, Kwangwoon University, 447–1 Wolgye-dong, Nowon-ku, Seoul 139–701, Korea
K.S. Chung
Affiliation:
Department of Electronic Engineering, Kyung Hee University, Seocheon-Ri, Kilheung-Eup, Yongin-City, Kyungki-do, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Extract

The dependences of the properties of Au/Ni/Si/Ni contacts, deposited on p-GaN epilayers by using electron-beam evaporation, on the Si layer thickness and the annealing temperature were investigated with the goal of producing contacts with low specific resistances. The results of the current–voltage (I–V) curves showed that the lowest specific contact resistance obtained for the Au/Ni/Si/Ni contact with a 1200-Å- thick Si layer on p-type GaN annealed at 700 °C for 1 min in a nitrogen atmosphere was 8.49 × 10-4 Ω cm2. The x-ray diffraction (XRD) measurements on the annealed Au/Ni/Si/Ni/p-GaN/sapphire heterostructure showed that Ni3Si, GaAu, and NiGa layers were formed at the Au/Ni/Si/Ni/p-GaN interfaces. While the intensities corresponding to the Ni3Si layer decreased with increasing annealing temperature above 700 °C, those related to the GaAu and the NiGa layers increased with increasing temperature. These results indicate that the Au/Ni/Si/Ni contacts with 1200-Å-thick Si layers annealed at 700 °C hold promise for potential applications in p-GaN-based optoelectronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. Appl. Phys. 28, L2112 (1989).CrossRefGoogle Scholar
2.Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. Appl. Phys. 31, 1258 (1992).CrossRefGoogle Scholar
3.Brandt, M.S., Johnson, N.M., Molnar, R.J., Singh, G., and Moustakas, T.D., Appl. Phys. Lett. 64, 2264 (1994).CrossRefGoogle Scholar
4.Qiu, C.H., Hoggatt, C., Melton, W., Leksono, M.W., and Pankove, J.I., Appl. Phys. Lett. 66, 2712 (1996).CrossRefGoogle Scholar
5.Fisher, A.I., Shan, W., Song, J.J., Chang, Y.C., Horning, R., and Goldenberg, B., Appl. Phys. Lett. 71, 1981 (1997).CrossRefGoogle Scholar
6.Liu, Q.Z., Yu, L.S., Deng, F., Lau, S.S., Chen, Q., Yang, J.W., and Khan, M.A., Appl. Phys. Lett. 71, 1658 (1997).CrossRefGoogle Scholar
7.Khan, M.A., Shur, M.S., and Chen, Q., Appl. Phys. Lett. 68, 3022 (1996).CrossRefGoogle Scholar
8.Foresi, J.S. and Moustakes, T.D., Appl. Phys. Lett. 62, 2859 (1993).CrossRefGoogle Scholar
9.Lin, M.E., Ma, Z., Huang, F.Y., Fan, Z.F., Allen, L.H., and Morkoc, H., Appl. Phys. Lett. 64, 1003 (1994).CrossRefGoogle Scholar
10.Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).CrossRefGoogle Scholar
11.Smith, M., Chen, G.D., Lin, J.Y., Jiang, H.X., AsifKhan, M., and Sun, C.J., Appl. Phys. Lett. 67, 3295 (1995).CrossRefGoogle Scholar
12.Fan, Z.F., Mohammad, S.N., Kim, W., Aktas, O., Botcharev, A.E., and Morkoc, H., Appl. Phys. Lett. 68, 1672 (1996).CrossRefGoogle Scholar
13.Ruvimov, S., Liliental-Wever, Z., and Washbum, J., Appl. Phys. Lett. 69, 1556 (1996).CrossRefGoogle Scholar
14.Burm, J., Chu, K., Davis, W.A., Schoff, W.J., Eastmann, L.F., and Eustis, T.J., Appl. Phys. Lett. 70, 464 (1997).CrossRefGoogle Scholar
15.Luther, B.P., Mohney, S.E., Jackson, T.N., Hahn, M.A., Chen, Q., and Yang, J.W., Appl. Phys. Lett. 70, 59 (1997).CrossRefGoogle Scholar
16.Nagai, H., Zhu, Q.S., Kawaguchi, Y., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 73, 2024 (1998).CrossRefGoogle Scholar
17.Mori, T., Kozawa, T., Ohwaki, T., Taga, Y., Nagai, S., Ymasaki, S., Asami, S., Shibata, N., and Koite, M., Appl. Phys. Lett. 69, 3537 (1996).CrossRefGoogle Scholar
18.Ishikawa, H., Kobayashi, S., Soide, Y., Yamasaki, S., Nagai, S., Umezaki, J., Koike, M., and Murakami, M., J. Appl. Phys. 81, 1315 (1997).CrossRefGoogle Scholar
19.Delucca, J.M., Venugopalan, H.S., Mohney, S.E., and Karlicek, R.F. Jr., Appl. Phys. Lett. 73, 3402 (1998).CrossRefGoogle Scholar
20.Jang, J-S., Chang, I-S., Kim, H-K., Seong, T-Y., Lee, S., and Park, S-J., Appl. Phys. Lett. 74, 70 (1999).CrossRefGoogle Scholar
21.Ho, J-K., Jong, C-S., Chiu, C.C., Huang, C-N., Chen, C-Y., and K K. Shin, Appl. Phys. Lett. 74, 1274 (1999).Google Scholar
22.Lee, J-L., Weber, M., Kim, J.K., Lee, J.W., Park, Y.J., Kim, T., and Lynn, K., Appl. Phys. Lett. 74, 2289 (1999).CrossRefGoogle Scholar
23.Sze, S.M., VLSI Technology (McGraw-Hill, New York, 1988).Google Scholar
24.Marlow, G.S. and Das, M.B., Solid-State Electron. 25, 91 (1982).CrossRefGoogle Scholar
25.Kaminska, E., Piotrowska, A., Barcz, A., Guziewicz, M., Kasjaniuk, S., Bremser, M.D., Davis, R.F., Dynowska, E., and Kwiatkowski, S., in Nitride Semiconductors, edited by Ponce, F.A., DenBaars, S.P., Meyer, B.K., Nakamura, S., and Strite, S. (Mater. Res. Soc. Symp. Proc. 482, Warrendale, PA, 1998), p. 1077.Google Scholar
26.Duxstad, K.J. and Haller, E.E., J. Appl. Phys. 82, 491 (1997).CrossRefGoogle Scholar
27.Liu, Q.Z., Yu, L.S., Deng, F., Lau, S.S., and Redwing, J.M., J. Appl. Phys. 84, 881 (1998).CrossRefGoogle Scholar