Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-05T19:18:30.179Z Has data issue: false hasContentIssue false

Characterization of the Induced Plastic Zone in a Single Crystal TiN(001) Film by Nanoindentation and Transmission Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

Magnus Odén
Affiliation:
Division of Engineering Materials, Department of Mechanical Engineering, Linköping University, S-581 83 Linköping, Sweden
Henrik Ljungcrantz
Affiliation:
Thin Film Physics Division, Department of Physics, Linköping University, S-581 83 Linköping, Sweden
Lars Hultman
Affiliation:
Thin Film Physics Division, Department of Physics, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

The slip system of TiN at room temperature has been determined to be {110} 〈110〉 by Burgers vector analysis using transmission electron microscopy and slip trace analysis of indents made on a TiN(001) film deposited on a MgO(001) substrate. Both small indents (0.4 mN maximum load) and large indents (40 mN maximum load) were used to study the dislocation structure in TiN. The nucleation of dislocations was investigated using small indents. Further development of the plastic zone was studied using large indents and microhardness indents (1.6 N). The critical resolved shear stress evaluated at the load when pop-in occurs was estimated to be 3.7 GPa, assuming a Hertzian elastic contact. Indents made with a 0.4 mN maximum load show a complex dislocation pattern with loops and straight segments that belong to the same slip system. Dislocations of mixed screw and edge type are dominant. The cascade of dislocations generated during pop-in is likely to nucleate from loops. For larger indents, the plastic zone extends more than three times the diameter of the imprint. The straight dislocations outside the large imprint are arranged in arrays along the 〈100〉 and 〈110〉 directions. A scanning force microscopy study of the surface outside a microhardness indent revealed a raised surface along 〈110〉 and formation of troughs along 〈100〉.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ljungcrantz, H., Odén, M., Hultman, L., Greene, J. E., and Sundgren, J-E., J. Appl. Phys. 80 (12), 67256733 (1996).CrossRefGoogle Scholar
2.Toth, L. E., Transition Metal Nitrides and Carbides (Academic Press, New York, 1971).Google Scholar
3.Wokulski, Z., Phys. Status. Solidi (a) 120, 175 (1990).CrossRefGoogle Scholar
4.Hultman, L., Shinn, M., Mirkarimi, P. B., and Barnett, S. A., J. Cryst. Growth 135, 309317 (1994).CrossRefGoogle Scholar
5.Pharr, G. M., Oliver, W. C., and Brotzen, F. R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
6.Farber, B. Y., Yoon, S. Y., Lagerlöf, K. P. D., and Heuer, A. H., Phys. Status Solidi (a) 137, 485498 (1993).CrossRefGoogle Scholar
7.Farber, B. Y., Yoon, S-Y., Lagerlöf, K. P. D., and Heuer, A. H., Z. Metallkd. 84, 426430 (1993).Google Scholar
8.Koubaiti, S., Couderc, J. J., Levade, C., and Vanderschaeve, G., Acta Mater. 44, 32793291 (1996).CrossRefGoogle Scholar
9.Zielinski, W., Huang, H., and Gerberich, W. W., J. Mater. Res. 8, 13001310 (1993).CrossRefGoogle Scholar
10.Johansson, S., Schweitz, J-Å., and Lagerlöf, K. P. D., J. Am. Ceram. Soc. 72, 11361139 (1989).CrossRefGoogle Scholar
11.Ericson, F., Hjort, K., Schweitz, J- Å., Anderson, S., and Jenzén, E., J. Cryst. Growth 143, 2228 (1994).CrossRefGoogle Scholar
12.Knight, J. C. and Page, T. F., Surf. Eng. 6, 263269 (1990).CrossRefGoogle Scholar
13.Odén, M. and Ericsson, T., J. Am. Ceram. Soc. 79, 21342140 (1996).CrossRefGoogle Scholar
14.Page, T. F., Oliver, W. C., and McHargue, C. J., J. Mater. Res. 7, 450473 (1992).CrossRefGoogle Scholar
15.Sundgren, J-E., Johansson, B. O., Rockett, A., Barnett, S. A., and Greene, J. E., in Physics and Chemistry of Protective Coating, American Institute of Physics, Universal City, CA, 1985 (American Vacuum Society), pp. 95115.Google Scholar
16.Powder Diffraction File (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1992).Google Scholar
17.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601609 (1986).CrossRefGoogle Scholar
18.Cockayne, D. J. H., Z. Naturforsch. 27a, 452 (1972).CrossRefGoogle Scholar
19.Hultman, L., Barnett, S. A., Sundgren, J-E., and Greene, J. E., J. Cryst. Growth 92, 639656 (1988).CrossRefGoogle Scholar
20.Richardson, R. W., Modern Ceramic Engineering, 2nd ed. (Marcel Dekker, Inc., New York, 1992).Google Scholar
21.Serbena, F. C., Williams, W. S., and Roberts, S. G., J. Hard. Mater. 6, 1725 (1995).Google Scholar
22.Lilleodden, E. T., Bonin, W., Nelson, J., Wyrobeck, J. T., and Gerberich, W. W., J. Mater. Res. 10, 21622165 (1995).CrossRefGoogle Scholar
23.Baker, S. P., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E., Jr., and P., Børgesen (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993) pp. 209216.Google Scholar
24.Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, 3rd ed. (McGraw-Hill, Inc., New York, 1970).Google Scholar
25.Hull, D. and Bacon, D. J., Introduction to Dislocations, 3rd ed. (Pergamon Press, Oxford, 1984).Google Scholar
26.Armstrong, R. W. and Wu, C. C., J. Am. Ceram. Soc. 61, 102106 (1978).CrossRefGoogle Scholar