Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T10:26:36.306Z Has data issue: false hasContentIssue false

Reorientation of carbon nanotubes in polymer matrix composites using compressive loading

Published online by Cambridge University Press:  01 April 2005

Michael J. Lance*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Chun-Hway Hsueh
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Ilia N. Ivanov
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
David B. Geohegan
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Purified single-walled nanotubes (SWNTs) were dispersed in an epoxy polymer and subjected to uniaxial compressive loading. The orientation and stress in the nanotubes were monitored in situ using polarized Raman microscopy. At strains less than 2%, the nanotubes reorient normal to the direction of compression, thereby minimizing the local strain energy. Above 2% strain, the Raman peak shift reaches a plateau. A new analytical model, which approximates the SWNT reorientation by varying the aspect ratio of a representative spheroid, predicted the rotation behavior of nanotubes under load. The results of this model suggest that the observed plateau of the Raman peak shift is caused by both polymer yielding and interfacial debonding at the ends of nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Calvert, P.: A recipe for strength. Nature 399, 210 (1999).10.1038/20326CrossRefGoogle Scholar
2. Thostenson, E.T., Ren, Z.F. and Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
3. Bendiab, N., Almairac, R., Sauvajol, J.L., Rols, S. and Elkaim, E.: Orientation of single-walled carbon nanotubes by uniaxial pressure. J. Appl. Phys. 93, 1769 (2003).CrossRefGoogle Scholar
4. Jin, L., Bower, C. and Zhou, O.: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197 (1998).10.1063/1.122125CrossRefGoogle Scholar
5. Wood, J.R., Zhao, Q. and Wagner, H.D.: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy. Composites Part A-Appl. Sci. Manuf. 32, 391 (2001).CrossRefGoogle Scholar
6. Frogley, M.D. and Wagner, H.D.: Mechanical alignment of quasi-one-dimensional nanoparticles. J. Nanosci. Nanotechnol. 2, 517 (2002).CrossRefGoogle ScholarPubMed
7. Frogley, M.D., Ravich, D. and Wagner, H.D.: Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647 (2003).10.1016/S0266-3538(03)00066-6CrossRefGoogle Scholar
8. Zhang, X.F., Liu, T., Sreekumar, T.V., Kumar, S., Moore, V.C., Hauge, R.H. and Smalley, R.E.: Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 3, 1285 (2003).10.1021/nl034336tCrossRefGoogle Scholar
9. Frogley, M.D., Zhao, Q. and Wagner, H.D.: Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys. Rev. B 65(2002).CrossRefGoogle Scholar
10. Zhao, Q., Frogley, M.D. and Wagner, H.D.: Direction-sensitive strain-mapping with carbon nanotube sensors. Compos. Sci. Technol. 62, 147 (2002).CrossRefGoogle Scholar
11. Puretzky, A.A., Geohegan, D.B., Fan, X. and Pennycook, S.J.: Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Appl. Phys. Mater. Sci. Proc. 70, 153 (2000).10.1007/s003390050027CrossRefGoogle Scholar
12. Puretzky, A.A., Geohegan, D.B., Schittenhelm, H., Fan, X.D. and Guillorn, M.A.: Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization. Appl. Surf. Sci. 197, 552 (2002).CrossRefGoogle Scholar
13. Puretzky, A.A., Schittenhelm, H., Fan, X.D., Lance, M.J., Allard, L.F. and Geohegan, D.B.: Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys. Rev. B 65(2002).10.1103/PhysRevB.65.245425CrossRefGoogle Scholar
14. Gommans, H.H., Alldredge, J.W., Tashiro, H., Park, J., Magnuson, J. and Rinzler, A.G.: Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy. J. Appl. Phys. 88, 2509 (2000).10.1063/1.1287128CrossRefGoogle Scholar
15. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671 (2003).10.1016/S0266-3538(03)00063-0CrossRefGoogle Scholar
16. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London A241, 376 (1957).Google Scholar
17. Mori, T. and Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571 (1973).10.1016/0001-6160(73)90064-3CrossRefGoogle Scholar
18. Hsueh, C.H.: Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. J. Am. Ceram. Soc. 72, 344 (1989).CrossRefGoogle Scholar
19. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72 (1952).CrossRefGoogle Scholar
20. Piggott, M.R.: Load Bearing Fibre Composites (Pergamon Press, Elmsford, NY, 1980).Google Scholar
21. Hsueh, C.H.: Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 123, 1 (1990).10.1016/0921-5093(90)90203-FCrossRefGoogle Scholar
22. Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).10.1103/PhysRevLett.84.5552CrossRefGoogle ScholarPubMed
23. Frankland, S.J.V., Harik, V.M., Degard, G.M., Brenner, D.W. and Gates, T.S.: The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63, 1655 (2003).10.1016/S0266-3538(03)00059-9CrossRefGoogle Scholar
24. Jin, Y. and Yuan, F.G.: Simulation of elastic properties of single-walled carbon nanotubes. Compos. Sci. Technol. 63, 1507 (2003).10.1016/S0266-3538(03)00074-5CrossRefGoogle Scholar