Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T15:39:36.494Z Has data issue: false hasContentIssue false

Comparative study of the oxide scale thermally grown on titanium alloys by ion beam analysis techniques and scanning electron microscopy

Published online by Cambridge University Press:  31 January 2011

A. Gutiérrez*
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
F. Pászti
Affiliation:
KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, Hungary; and Centro de Microanálisis de Materiales, Cantoblanco, E-28049 Madrid, Spain
A. Climent-Font
Affiliation:
Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; and Centro de Microanálisis de Materiales, Cantoblanco, E-28049 Madrid, Spain
J.A. Jiménez
Affiliation:
Centro Nacional de Investigaciones Metalúrgicas, CSIC, E-28040 Madrid, Spain
M.F. López
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present work, the oxide layers developed at elevated temperature on three vanadium-free titanium alloys, of interest as implant biomaterials, were studied by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and scanning electron microscopy. The chemical composition of the alloys investigated, in wt%, was Ti–7Nb–6Al, Ti–13Nb–13Zr, and Ti–15Zr–4Nb. Upon oxidation in air at 750 °C, an oxide scale forms, with a chemical composition, morphology, and thickness that depend on the alloy composition and the oxidation time. After equal exposure time, the Ti–7Nb–6Al alloy exhibited the thinnest oxide layer due to the formation of an Al2O3-rich layer. The oxide scale of the two TiNbZr alloys is mainly composed of Ti oxides, with small amounts of Nb and Zr dissolved. For both TiNbZr alloys, the role of the Nb-content on the mechanism of the oxide formation is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Callen, B.W., Lowenberg, B.F., Lugowski, S., Sodhi, R.N.S., Davies, J.E.: Nitric-acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace-element release. J. Biomed. Mater. Res. 29, 279 1995Google Scholar
2Sargeant, A., Goswami, T.: Hip implants—Paper VI—Ion concentrations. Mater. Des. 28, 155 2007CrossRefGoogle Scholar
3Jacobs, J.J., Skipor, A.K., Black, J., Urban, R.M., Galante, J.O.: Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J. Bone Joint Surg. 73-A, 1475 1991Google Scholar
4Steinemann, S.G.: Corrosion of surgical implant—In vivo and in vitro test in Evaluation of Biomaterials edited by Wiley New York 1980 134Google Scholar
5Bianco, P.D., Ducheyne, P., Cuckler, J.M.: Local accumulation of titanium released from a titanium implant in the absence of wear. J. Biomed. Mater. Res. 31, 227 1996Google Scholar
6Laing, P.G., Ferguson, A.B. Jr., Hodge, E.S.: Tissue reaction in rabbit muscle exposed to metallic implants. J. Biomed. Mater. Res. 1, 135 1967Google Scholar
7Perl, D.P., Brody, A.R.: Alzheimer’s disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurons. Science 208, 297 1980CrossRefGoogle ScholarPubMed
8Black, J.: Does corrosion matter? J. Bone Joint Surg. 70-B, 517 1988Google Scholar
9Okazaki, Y., Rao, S., Ito, Y., Tateishi, T.: Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 19, 1197 1998Google Scholar
10Oliveira, N.T.C., Ferreira, E.A., Duarte, L.T., Biaggio, S.R., Rocha-Filho, R.C., Bocchi, N.: Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Nb–13Zr alloys. Electrochim. Acta 51, 2068 2006Google Scholar
11Hao, Y.L., Li, S.J., Sun, S.Y., Zheng, C.Y., Yang, R.: Elastic deformation behavior of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater 3, 277 2007CrossRefGoogle ScholarPubMed
12Ho, W.F., Ju, C.P., Lin, J.H. Chern: Structure and properties of cast binary Ti–Mo alloys. Biomaterials 20, 2115 1999CrossRefGoogle ScholarPubMed
13Trentani, L., Pelillo, F., Pavesi, F.C., Ceciliani, L., Cetta, G., Forlino, A.: Evaluation of the TiMo12Zr6Fe2 alloy for orthopaedic implants: In vitro biocompatibility study by using primary human fibroblasts and osteoblasts. Biomaterials 23, 2863 2002Google Scholar
14Maehara, K., Doi, K., Matsushita, T., Sasaki, Y.: Application of vanadium-free titanium alloys to artificial hip joints. Mater. Trans. 43, 2936 2002Google Scholar
15Zu, X.T., Feng, X.D., Wang, Z.G., Zeng, G.T., Lin, L.B., Li, Y.L., Huang, X.Q.: Characterisation of the oxide scale on a Ti–2Al–2.5Zr alloy with and without pre-oxidation in an alkaline steam at 300 degrees C. Surf. Coat. Technol. 148, 216 2001Google Scholar
16Dugdale, I., Cotton, J.B.: The anodic polarization of titanium in halide solutions. Corros. Sci. 4, 397 1964CrossRefGoogle Scholar
17Pan, J., Thierry, D., Leygraf, C.: Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 41, 1143 1996CrossRefGoogle Scholar
18Gonzalez, J.E.G., Mirza-Rosca, J.C.: Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J. Electroanal. Chem. 471, 109 1999CrossRefGoogle Scholar
19Tamiselvi, S., Raman, V., Rajendran, N.: Corrosion behavior of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim. Acta 52, 839 2006CrossRefGoogle Scholar
20López, M.F., Jiménez, J.A., Gutiérrez, A.: Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim. Acta 48, 1395 2003Google Scholar
21Morant, C., López, M.F., Gutiérrez, A., Jiménez, J.A.: AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials. Appl. Surf. Sci. 220, 79 2003Google Scholar
22López, M.F., Jiménez, J.A., Gutiérrez, A.: In vitro corrosion behavior of titanium alloys without vanadium. Electrochim. Acta 47, 1359 2002Google Scholar
23Gutiérrez, A., Munuera, C., López, M.F., Jiménez, J.A., Morant, C., Matzelle, T., Kruse, N., Ocal, C.: Surface microstructure of the oxide protective layers grown on vanadium-free Ti alloys for use in biomedical applications. Surf. Sci. 600, 3780 2006Google Scholar
24Munuera, C., Matzelle, T.R., Kruse, N., López, M.F., Gutiérrez, A., Jiménez, J.A., Ocal, C.: Surface elastic properties of Ti alloys modified for medical implants: A force spectroscopy study. Acta Biomater. 3, 113 2007Google Scholar
25López, M.F., Jiménez, J.A., Gutiérrez, A.: Surface characterization of new non-toxic titanium alloys for use as biomaterials. Surf. Sci. 482, 300 2001Google Scholar
26López, M.F., Soriano, L., Palomares, F.J., Sánchez-Agudo, M., Fuentes, G.G., Gutiérrez, A., Jiménez, J.A.: Soft x-ray absorption spectroscopy study of oxide layers on titanium alloys. Surf. Interface Anal. 33, 570 2002Google Scholar
27Gutiérrez, A., López, M.F., Jiménez, J.A., Morant, C., Paszti, F., Climent, A.A.: Surface characterization of the oxide layer grown on Ti–Nb–Zr and Ti–Nb–Al alloys. Surf. Interface Anal. 36, 977 2004CrossRefGoogle Scholar
28Textor, M., Sittig, C., Frauchiger, V., Tosatti, S., Brunette, D.M.: Properties and biological significance of natural oxide films on titanium and its alloys in Titanium in Medicine edited by D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen Springer-Verlag Berlin, Germany 2001 171230CrossRefGoogle Scholar
29Treves, C., Martinesi, M., Stio, M., Gutiérrez, A., Jiménez, J.A., López, M.F.: Biocompatibility characterization of surface-modified titanium alloys unpublishedGoogle Scholar
30Climent-Font, A., Pászti, F., García, G., Fernández-Jiménez, M.T., Agulló, F.: First measurements with the Madrid 5 MV tandem accelerator. Nucl. Instrum. Methods B,219–220, 400 2004CrossRefGoogle Scholar
31Kótai, E.: Computer methods for analysis and simulation of RBS and ERDA spectra. Nucl. Instrum. Methods B 85, 588 1994Google Scholar
32Lee, D.B., Woo, S.W.: High temperature oxidation of Ti–47% Al–1.7% W-3.7% Zr alloys. Intermetallics 13, 169 2005CrossRefGoogle Scholar
33Du, H.L., Datta, P.K., Lewis, D.B., Burnell-Gray, J.S.: Air oxidation behavior of Ti–6Al–4V alloy between 650 °C and 850 °C. Corros. Sci. 36, 631 1994Google Scholar
34Gurappa, I.: Effect of aluminizing on the oxidation behavior of the titanium alloy, IMI 834. Oxid. Met. 56, 73 2001Google Scholar
35Gauer, L., Alpèrine, S., Steinmetz, P., Vassel, A.: Influence of niobium additions on high-temperature-oxidation behavior of Ti3Al alloys and coatings. Oxid. Met. 42, 49 1994Google Scholar
36Richardson, F.D.: in Physical Chemistry of Melts in Process Metallurgy Academic Press London, UK 1974Google Scholar
37Chen, Y.S., Rosa, C.J.: Oxidation characteristics of Ti–4.37 wt% Ta alloy in the temperature range 1258–1473 K. Oxid. Met. 14, 147 1980CrossRefGoogle Scholar
38Göbel, M., Sunderkötter, J.D., Mircea, D.I., Jenett, H., Stroosnijder, M.F.: Study of the high-temperature oxidation behavior of Ti and Ti4Nb with SNMS using tracers. Surf. Interface Anal. 29, 321 2000Google Scholar
39Gutiérrez, A., de Damborenea, J.: High-temperature oxidation behavior of laser-surface-alloyed incoloy-800H with Al. Oxid. Met. 47, 259 1997Google Scholar
40López, M.F., Gutiérrez, A., García-Alonso, M.C., Escudero, M.L.: Surface analysis of a heat-treated, Al-containing, iron-based superalloy. J. Mater. Res. 13, 3411 1998CrossRefGoogle Scholar