Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T07:25:25.639Z Has data issue: false hasContentIssue false

A combinatorial approach for the synthesis and analysis of AlxCryMozNbTiZr high-entropy alloys: Oxidation behavior

Published online by Cambridge University Press:  26 July 2018

Owais Ahmed Waseem*
Affiliation:
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Ulanbek Auyeskhan*
Affiliation:
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Hyuck Mo Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Ho Jin Ryu*
Affiliation:
Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To overcome the limited feasibility of various refractory high-entropy alloys (HEAs) due to the presence of (i) very dense elements (W and Ta), (ii) costly elements (Hf and Ta), and (iii) oxidation prone elements (V) in them, AlxCryMozNbTiZr HEAs were prepared via arc-melting. Considering the critical nature of oxidation resistance in high-temperature applications, HEAs were characterized to form a combinatorial library of microstructural and oxidation behavior. AlxCryMozNbTiZr HEAs revealed multiphase microstructures consisting of intermetallic phases along with BCC matrices. Mass loss and porous microstructures were obtained in Mo-rich HEAs after oxidation at 1000 °C for 1 h. The presence of Al enhanced the oxidation resistance and developed a protective oxide layer on the HEAs. Al30Cr10-NTZ exhibited promising potential for use in high temperature applications, as it showed an oxidation time exponent of ∼0.5 and a dense and continuous oxide layer.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

References

REFERENCES

Senkov, O.N. and Woodward, C.F.: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng., A 529, 311 (2011).CrossRefGoogle Scholar
Yurchenko, N.Y., Stepanov, N.D., Shaysultanov, D.G., Tikhonovsky, M.A., and Salishche, G.A.: Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys. Mater. Charact. 121, 125 (2016).CrossRefGoogle Scholar
Yurchenko, N., Stepanov, N., Tikhonovsky, M., and Salishchev, G.: Phase evolution of the AlxNbTiVZr (x = 0; 0.5; 1; 1.5) high entropy alloys. Metals 6, 298 (2016).CrossRefGoogle Scholar
Yurchenko, N.Y., Stepanov, N.D., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mater. Sci. Eng., A 704, 82 (2017).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87 (2017).CrossRefGoogle Scholar
Gao, M.C., Zhang, B., Yang, S., and Guo, S.M.: Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333 (2016).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 31, 1184 (2015).CrossRefGoogle Scholar
Yang, X., Zhang, Y., and Liaw, P.K.: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng. 36, 292 (2012).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloys Compd. 652, 266 (2015).CrossRefGoogle Scholar
Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., and Gao, M.C.: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloys Compd. 696, 1139 (2017).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Effect of composing element on microstructure and mechanical properties in Mo–Nb–Hf–Zr–Ti multi-principle component alloys. Intermetallics 69, 13 (2016).CrossRefGoogle Scholar
Liu, C.M., Wang, H.M., Zhang, S.Q., Tang, H.B., and Zhang, A.L.: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).CrossRefGoogle Scholar
Gasik, M. and Yu, H.: Phase equilibria and thermal behaviour of biomedical Ti–Nb–Zr alloy. Plansee Semin. 1, 1 (2009).Google Scholar
Wu, Y.D., Cai, Y.H., Chen, X.H., Wang, T., Si, J.J., Wang, L., Wang, Y.D., and Hui, X.D.: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 83, 651 (2015).CrossRefGoogle Scholar
Juan, C.C., Tseng, K.K., Hsu, W.L., Tsai, M.H., Tsai, C.W., Lin, C.M., Chen, S.K., Lin, S.J., and Yeh, J.W.: Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 175, 284 (2016).CrossRefGoogle Scholar
Morinaga, M., Nambu, T., Fukumori, J., Kato, M., Sakaki, T., Matsumoto, Y., Torisaka, Y., and Horihata, M.: Effect of surface imperfections on the ductility of pure chromium. J. Mater. Sci. 30, 1105 (1995).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Li, Y., Chen, X., and Zhang, H.: Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 174, 82 (2016).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Sokolovsky, V.S., Tikhonovsky, M.A., and Salishchev, G.A.: An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater. Lett. 161, 136 (2015).CrossRefGoogle Scholar
Butler, T.M., Chaput, K.J., Dietrich, J.R., and Senkov, O.N.: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J. Alloys Compd. 729, 1004 (2017).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Dimiduk, D.M., Woodward, C., and Miracle, D.B.: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J. Mater. Sci. 47, 6522 (2012).CrossRefGoogle Scholar
Chang, C.H., Titus, M.S., and Yeh, J.W.: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv. Eng. Mater. 20, 1700948 (2018).CrossRefGoogle Scholar
Gao, M.C.: Progress in high entropy alloys. JOM 67, 2251 (2015).CrossRefGoogle Scholar
Huang, C., Zhang, Y., Shen, J., and Vilar, R.: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).CrossRefGoogle Scholar
Yurchenko, N., Stepanov, N., and Salishchev, G.: Laves-phase formation criterion for high-entropy alloys. Mater. Sci. Technol. 33, 17 (2017).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Woodward, C., and Miracle, D.B.: Low-density refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).CrossRefGoogle Scholar
Duan, Y.H., Huang, B., Sun, Y., Peng, M.J., and Zhou, S.G.: Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation. J. Alloys Compd. 590, 50 (2014).CrossRefGoogle Scholar
Raghavan, V.: Al–Fe–Zr (aluminum–iron–zirconium). J. Phase Equilib. Diffus. 27, 284 (2006).CrossRefGoogle Scholar
Kellou, A., Grosdidier, T., Coddet, C., and Aourag, H.: Theoretical study of structural, electronic, and thermal properties of Cr2(Zr,Nb) Laves alloys. Acta Mater. 53, 1 (2005).CrossRefGoogle Scholar
Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemüller, C., Wagner, J.N., Christ, H-J., and Heilmaier, M.: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd. 661, 206 (2016).CrossRefGoogle Scholar
Morinaga, M., Yukawa, N., Adachi, H., and Ezaki, H.: New phacomp and its applications to alloy design. Superalloys 1, 523 (1984).Google Scholar
Lu, Y., Dong, Y., Jiang, L., Wang, T., Li, T., and Zhang, Y.: A criterion for topological close-packed phase formation in high entropy alloys. Entropy 17, 2355 (2015).CrossRefGoogle Scholar
Waseem, O.A., Lee, J., Lee, H.M., and Ryu, H.J.: The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater. Chem. Phys. 210, 87 (2018).CrossRefGoogle Scholar
Müller, F., Gorr, B., Christ, H-J., Chen, H., Kauffmann, A., and Heilmaier, M.: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta–Mo–Cr–Ti–Al. Mater. High Temp. 3409, 1 (2017).Google Scholar
Gorr, B., Mueller, F., Christ, H-J., Mueller, T., Chen, H., Kauffmann, A., and Heilmaier, M.: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb20Mo20Cr20Ti20Al with and wit hout Si addition. J. Alloys Compd. 688, 468 (2016).CrossRefGoogle Scholar
Kai, W., Li, C.C., Cheng, F.P., Chu, K.P., Huang, R.T., Tsay, L.W., and Kai, J.J.: The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950 °C in various oxygen-containing atmospheres. Corros. Sci. 108, 209 (2015).CrossRefGoogle Scholar
Coats, A.W. and Redfern, J.P.: Thermogravimetric analysis. A review. Analyst 88, 906 (1963).CrossRefGoogle Scholar
Karahan, T., Ouyang, G., Ray, P.K., Kramer, M.J., and Akinc, M.: Oxidation mechanism of W substituted Mo–Si–B alloys. Intermetallics 87, 38 (2017).CrossRefGoogle Scholar
Meyer, M.K., Thom, A.J., and Akinc, M.: Oxide scale formation and isothermal oxidation behavior of Mo–Si–B intermetallics at 600–1000 °C. Intermetallics 7, 153 (1999).CrossRefGoogle Scholar
Kamruddin, M., Ajikumar, P.K., Dash, S., Tyagi, A.K., and Raj, B.: Thermogravimetry-evolved gas analysis-mass spectrometry system for materials research. Bull. Mater. Sci. 26, 449 (2003).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).CrossRefGoogle Scholar
Dirras, G., Gubicza, J., Heczel, A., Lilensten, L., Couzinié, J-P., Perrière, L., Guillot, I., and Hocini, A.: Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Charact. 108, 1 (2015).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Panina, E.S., Tikhonovsky, M.A., and Zherebtsov, S.V.: Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188, 162 (2017).CrossRefGoogle Scholar
Fazakas, É., Zadorozhnyy, V., Varga, L.K., Inoue, A., Louzguine-Luzgin, D.V., Tian, F., and Vitos, L.: Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int. J. Refract. Met. Hard Mater. 47, 131 (2014).CrossRefGoogle Scholar
Murayama, Y. and Hanada, S.: High temperature strength, fracture toughness and oxidation resistance of Nb–Si–Al–Ti multiphase alloys. Sci. Technol. Adv. Mater. 3, 145 (2002).CrossRefGoogle Scholar