Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T05:43:07.578Z Has data issue: false hasContentIssue false

Petrology of ultramafic xenoliths from Madeira island

Published online by Cambridge University Press:  01 May 2009

J. Munha
Affiliation:
Departmento de Geologia, Faculdade de Ciencias, Universidade de Lisboa, Bloco C2, 5° Piso, 1700 Lisboa, Portugal
T. Palacios
Affiliation:
Departmento de Geologia, Faculdade de Ciencias, Universidade de Lisboa, Bloco C2, 5° Piso, 1700 Lisboa, Portugal
N. D. Macrae
Affiliation:
Department of Geology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
J. Mata
Affiliation:
Departmento de Geologia, Faculdade de Ciencias, Universidade de Lisboa, Bloco C2, 5° Piso, 1700 Lisboa, Portugal

Abstract

Ultramafic xenoliths from Madeira island are divided into dunite/websterite/wehrlite/clinopyroxenite (DWWC) and harzburgite/lherzolite suites; the harzburgite/lherzolite xenoliths show abundant deformational features and are more refractory (Fo = 90–91) than the DWWC suite (Fo = 77–88).

DWWC xenoliths are spinel-bearing olivine ± orthophyroxene cumulates with intercumulus clinopyroxene and rare plagioclase, amphibole and phlogopite. Mineral chemistry and geothermobarometric data indicate that DWWC xenoliths crystallized at 1150–1300 °C from Madeiran alkalic basalts and accumulated in magma reservoir(s) located 36–45 km beneath the island.

The harzburgite/lherzolite xenoliths are composed of olivine + orthopyroxene + spinel ± clinopyroxene ± (rare) phlogopite and display alkali feldspar or clinopyroxenite veins and crystal aggregates. The complex thermal evolution recorded by these xenoliths and the close similarity of clinopyroxene REE contents and calculated fO2 values in both harzburgites and DWWC cumulates are attributed to recent infiltration of the harzburgites by melts trapped or crystallized within the mantle; these features, and the refractory bulk chemistry of the harzburgite/lherzolite suite, support the interpretation that these xenoliths represent depleted oceanic lithosphere variously modified by magmatism associated with the genesis of Madeira island. The association of these upper mantle xenoliths with cumulates crystallized from Madeiran magmas (DWWC) suggests that the harzburgite/lherzolite suite originated in the uppermost mantle above magma storage zone(s), probably near the boundary between the mantle and the overlying oceanic crust.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, G. & Bishop, F. C. 1986. The olivine-clinopyroxene geobarometer: experimental results in the CaO-FeO-MgO-SiO2 system. Contributions to Mineralogy and Petrology 94, 230–37.CrossRefGoogle Scholar
Aires-Barros, L., Matias, M. J. & Miranda, A. M. 1974. Preliminary note on the petrology of Madeira island. Boletim do Museu Mineralogico e Geologico da Faculdade de Ciencias, 14 (1), 527.Google Scholar
Ayuso, R. A., Bence, A. E. & Taylor, S. R. 1976. Upper Jurassic tholeiitic basalts from DSDP Leg 11. Journal of Geophysical Research 81, 4305–27.CrossRefGoogle Scholar
Bertrand, P. & Mercier, J. C. 1985. The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth and Planetary Science Letters 76, 109–22.CrossRefGoogle Scholar
Bohrson, W. A. & Clague, D. A. 1988. Origin of ultramafic xenoliths containing exsolved pyroxenes from Hualalai Volcano, Hawaii. Contributions to Mineralogy and Petrology 100, 139–55.CrossRefGoogle Scholar
Bonatti, E. & Hamlyn, P. R. 1981. Oceanic ultramafic rocks. In The Sea, the oceanic lithosphere, Vol. 7 (ed. Emiliani, C.), pp. 241–83. New York: Wiley.Google Scholar
Canil, D., Virgo, D. & Scarfe, C. M. 1990. Oxidation state of mantle xenoliths from British Columbia, Canada. Contributions to Mineralogy and Petrology 104, 453–62.CrossRefGoogle Scholar
Carmichael, I. S. E., Nicholls, J., Spera, F. J., Wood, B. J. & Nelson, S. A. 1977. High-temperature properties of silicate liquids: applications to the equilibration and ascent of basic magma. Transactions of the Royal Society of London. Series A, 286, 373431.Google Scholar
Carter, J. L. 1971. Mineralogy and chemistry of the earth's upper mantle based on the partial fusion-partial crystallization model. Bulletin of the Geological Society of America 88, 556–70.Google Scholar
Clague, D. A. 1987. Hawaiian xenolith populations, magma rates, and development of magma chambers. Bulletin of Volcanology 49, 577–87.CrossRefGoogle Scholar
Clague, D. A. 1988. Petrology of ultramafic xenoliths from Loihi Seamount, Hawaii. Journal of Petrology 29, 1161–86.CrossRefGoogle Scholar
Cox, K. G., Bell, J. D. & Pankhurst, R. J. 1979. The Interpretation of Igneous Rocks. London: George Allen & Unwin.CrossRefGoogle Scholar
Dick, H. J. B. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.CrossRefGoogle Scholar
Dick, H. J. B. & Fisher, R. L. 1984. Mineralogic studies of the residues of mantle melting: Abyssal and Alpine-type peridotites. In Kimberlites II: The mantle and crust-mantle relationships (ed. Kornprobst, J.), pp. 295308. Amsterdam: Elsevier.CrossRefGoogle Scholar
Eggler, D. H. & Baker, D. R. 1982. Reduced volatiles in the system C-O-H: implications to mantle melting, fluid formation and diamond genesis. In High pressure research in geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 237–50. Tokyo: Centre for Academic Publications, Japan.CrossRefGoogle Scholar
England, R. N. & Davies, H. L. 1973. Mineralogy of ultramafic cumulates and tectonites from eastern Papua. Earth and Planetary Science Letters 17, 416–25.CrossRefGoogle Scholar
Fabries, J. 1979. Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology 69, 329–36.CrossRefGoogle Scholar
Feraud, G., Schminke, H. U., Lietz, J., Gostaud, J., Pritchard, G. & Bleil, U. 1984. New K-Ar ages, chemical analysis and magnetic data of rocks from the islands of Santa Maria (Azores), Porto Santo and Madeira (Madeira archipelago) and Gran Canaria (Canary islands). Arquipelago, Revista da Universidade de Acores, Series Ciencias da Natureza, no. 5, 213–40.Google Scholar
Fraser, D. & Lawless, P. 1978. Paleogeotherms: implications of disequilibrium in garnet lherzolite xenoliths. Nature 273, 220–2.CrossRefGoogle Scholar
Freer, R. 1981. Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contributions to Mineralogy and Petrology 76, 440–54.CrossRefGoogle Scholar
Frey, F. A. & Green, D. H. 1974. The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta 38, 1023–59.CrossRefGoogle Scholar
Frey, F. A. & Prinz, M. 1978. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters 38, 129–76.CrossRefGoogle Scholar
Frey, F. A. & Roden, M. F. 1987. The mantle source for the Hawaiian islands: Constraints from the lavas and ultramafic inclusions. In Mantle Metasomatism (eds Menzies, M. A. & Hawkesworth, C. J.), pp. 423–63. London: Academic Press.Google Scholar
Gagel, C. 1913. Studien uber den aufbau und die gesteine Madeiras. Zeitschrift Deutschen Geologischen Gesellschaft, 64, 344491.Google Scholar
Gasparik, T. & Newton, R. C. 1984. The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO-Al2O3-SiO2. Contributions to Mineralogy and Petrology 85, 186–96.CrossRefGoogle Scholar
Ghiorso, M. S., Carmichael, I. S. E., Rivers, M. L. & Sack, R. O. 1983. The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contributions to Mineralogy and Petrology 84, 107–45.CrossRefGoogle Scholar
Goto, A. & Yokoyama, K. 1988. Lherzolite inclusions in olivine nephelinite tuff from Salt Lake Crater, Hawaii. Lithos 21, 6780.CrossRefGoogle Scholar
Green, D. H. & Ringwood, A. E. 1967. The genesis of basaltic magmas. Contributions to Mineralogy and Petrology 15, 103–90.CrossRefGoogle Scholar
Haggerty, S. E. 1978. The redox state of planetary basalts. Geophysical Research Letter 5, 443–6.CrossRefGoogle Scholar
Hanson, G. J. 1977. Evolution of suboceanic mantle. Journal of the Geological Society of London 134, 235254.CrossRefGoogle Scholar
Harte, B. 1977. Rock nomenclature with particular relation to deformation and recrystallization textures in olivine bearing xenoliths. Journal of Geology 85, 279–88.CrossRefGoogle Scholar
Henry, D. J. & Medaris, L. G. Jr, 1980. Application of pyroxene and olivine-spinel geothermometers to spinel peridotites in southwestern Oregon. American Journal of Science 280–A, 211–31.Google Scholar
Herzberg, C. T. & Chapman, N. A. 1976. Clinopyroxene geothermometry of spinel lherzolites. American Mineralogist 61, 626637.Google Scholar
Hughes, D. J. & Brown, G. C. 1972. Basalts from Madeira: A petrochemical contribution to the genesis of oceanic alkalic rock series. Contributions to Mineralogy and Petrology 37, 91109.CrossRefGoogle Scholar
Irving, A. J. 1980. Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. American Journal of Science 280–A, 389426.Google Scholar
Irving, A. J. & Frey, F. A. 1984. Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis. Geochimica et Cosmochimica Acta 48, 1201–21.CrossRefGoogle Scholar
Kay, R. W. & Hubbard, N. J. 1978. Trace elements in ocean ridge basalts. Earth and Planetary Science Letters 38, 95116.CrossRefGoogle Scholar
Kempton, P. D. 1987. Metasomatism and enrichment in lithospheric peridotites. In Mantle Metasomatism (eds Menzies, M. A. and Hawkesworth, C. J.), pp. 4587. London: Academic Press.Google Scholar
Kuno, H. 1969. Mafic and ultramafic inclusions in basaltic rocks and the nature of the upper mantle. In The earth's crust and upper mantle (ed. Hart, P.J.), pp. 507–13. American Geophysical Union Geophysical Monograph no. 13.Google Scholar
Leake, B. E. 1978. Nomenclature of amphiboles. Canadian Mineralogist 16, 501–20.Google Scholar
Lindsley, D. H. 1983. Pyroxene thermometry. American Mineralogist 88, 477–93.Google Scholar
Macrae, N. D. 1987. Quantitative analysis of REEs by SIMS. American Mineralogist 72, 1263–8.Google Scholar
Macrae, N. D. & Russel, M. R. 1987. Quantitative REE SIMS analysis of komatiite pyroxenes, Munro Township, Ontario, Canada. Chemical Geology 64, 307–17.CrossRefGoogle Scholar
Maaloe, S. & Aoki, K. 1977. The major element composition of the upper mantle estimated from the composition of lherzolites. Contributions to Mineralogy and Petrology 63, 161–73.CrossRefGoogle Scholar
Mattioli, G. S. & Wood, B. J. 1988. Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contributions to Mineralogy and Petrology 98, 148–62.CrossRefGoogle Scholar
Menzies, M. A. & Hawkesworth, C. J. 1987. Upper mantle processes and composition. In Mantle Xenoliths (ed. Nixon, P. H.), pp. 725–38. Chichester: Wiley.Google Scholar
Menzies, M. A., Rogers, N., Tindle, A. & Hawkesworth, C.J. 1987. Metasomatic enrichment processes in lithospheric peridotites, an effect of astenospherelithosphere interaction. In Mantle Metasomatism (eds Menzies, M. A. and Hawkesworth, C. J.), pp. 313–64. London: Academic Press.Google Scholar
Mori, T. & Green, D. H. 1978. Laboratory duplication of phase equilibria observed in natural garnet lherzolites. Journal of Geology 86, 8397.CrossRefGoogle Scholar
Nicholls, J. 1976. The activity of components in natural silicate melts. In Thermodynamics in Geology (ed. Fraser, D. G.), pp. 327–48. Dordrecht: D. Reidel.Google Scholar
Nicholls, J., Carmichael, I. S. E. & Stormer, J. C. 1971. Silica activity and P total in igneous rocks. Contributions to Mineralogy and Petrology 33, 120.CrossRefGoogle Scholar
O'Neill, H. St. C., Ortez, N., Arculus, R. J., Wall, V. J. & Green, D. H. 1982. Oxygen fugacities from the assemblage olivine-orthopyroxene-spinel. Terra Cognita 2, 228.Google Scholar
O'Neill, H. St. C. & Wall, V.J. 1987. The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth's upper mantle. Journal of Petrology 28, 1169–91.CrossRefGoogle Scholar
Pike, J. E. N. & Schwarzman, E. C. 1977. Classification of textures in ultramafic xenoliths. Journal of Geology 85, 4961.CrossRefGoogle Scholar
Portugal Ferreira, M. 1985. Evolucao geocronologica e paleomagnetica das ilhas do arquipelago da Madeira – uma sintese. Memorias Noticias, Publicaçoes Museu Laboratorio Mineralogico Geologico, Universidade Coimbra 99, 213218.Google Scholar
Portugal Ferreira, M., Macedo, R., Costa, V., Reynolds, J. H., Riley, J. E. & Rowe, M. W. 1975. Rare-gas dating, II. Attempted uranium-helium dating of young volcanic rocks from Madeira archipelago. Earth and Planetary Science Letters 25, 142–50.CrossRefGoogle Scholar
Portugal Ferreira, M., Macedo, R. & Ferreira, J. F. F. 1988. K-Ar geochronology in the Selvagens, Porto Santo and Madeira islands (eastern-central Atlantic): a 30 m.y. spectrum of submarine and subaereal volcanism. Lunar Planetary Institute (Abstracts) 19, 325–6.Google Scholar
Prabhakaran, N. & Sen, G. 1988. Termobar: A Pascal program for calculating pressure and temperature of mantle rocks. Computers & Geosciences 14, 527–39.CrossRefGoogle Scholar
Ringwood, A. E. 1975. Composition and petrology of the earth's mantle. New York: McGraw-Hill.Google Scholar
Roedder, E. 1984. Fluid inclusions. In Upper Mantle Environments (ed. Ribbe, P. H.), pp. 503–32. Mineralogical Society of America, Reviews in Mineralogy no. 12.Google Scholar
Sachtleben, Th. & Seck, H. A. 1981. Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry. Contributions to Mineralogy and Petrology, 78 157–65.CrossRefGoogle Scholar
Sen, G. 1987. Xenoliths associated with the Hawaiian hot spot. In Mantle Xenoliths (ed. Nixon, P. H.), pp. 359–76. Chichester: Wiley.Google Scholar
Sen, G. 1988. Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from Koolau shield, Oahu, Hawaii: Implications for petrology of the post-eruptive lithosphere beneath Oahu. Contributions to Mineralogy and Petrology 100, 6191.CrossRefGoogle Scholar
Sen, G. & Presnall, D. C. 1986. Petrogenesis of dunite xenoliths from Koolau volcano, Oahu, Hawaii: Implications for Hawaiian volcanism. Journal of Petrology 27, 197217.CrossRefGoogle Scholar
Shibata, T. & Thompson, G. 1986. Peridotites from the mid-Atlantic ridge at 43° N and their petrogenetic relation to abyssal tholeiites. Contributions to Mineralogy and Petrology 93, 144–59.CrossRefGoogle Scholar
Sigurdsson, H. & Schilling, J.-G. 1976. Spinels in mid-Atlantic ridge basalts: chemistry and occurrence. Earth and Planetary Science Letters 29, 720.CrossRefGoogle Scholar
Silva, M. O. 1987. Geological field trip guide to Madeira. Proceedings of Symposium on Applied and Environmental Geology: V – Hydrogeology of Volcanic Rocks, Madeira. Departamento Geologia, Faculdade Ciencias, Lisboa.Google Scholar
Song, Y. & Frey, F. A. 1989. Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: Implications for subcontinental mantle heterogeneity. Geochimica et Cosmochimica Acta 53, 97113.CrossRefGoogle Scholar
Stormer, J. C, 1973. Calcium zoning in olivine and its relationship to silica activity and pressure. Geochimica et Cosmochimica Acta 37, 1815–21.CrossRefGoogle Scholar
Stosch, H.-G. & Seck, H. A. 1980. Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany. Geochimica et Cosmochimica Acta 44, 457–70.CrossRefGoogle Scholar
Sun, S. S., Nesbitt, R. & Sharaskin, A.Ya. 1979. Geochemical characteristics of mid-ocean ridge basalts. Earth and Planetary Science Letters 44, 119–38.CrossRefGoogle Scholar
Watkins, N. D. & Abdel-Monem, A. 1971. Detection of the Gilsa geomagnetic polarity event on the island of Madeira. Bulletin of the Geological Society of America 82, 191–8.CrossRefGoogle Scholar
Webb, S. A. C. & Wood, B. J. 1986. Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology 92, 471–80.CrossRefGoogle Scholar
Wells, P. R. A. 1977. Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology 62, 129–39.CrossRefGoogle Scholar
White, R. W. 1966. Ultramafic inclusions in basaltic rocks from Hawaii. Contributions to Mineralogy and Petrology 12, 245314.CrossRefGoogle Scholar
Wilkinson, J. F. G. 1975. Ultramafic inclusions and high pressure megacrysts from a nephelinite sill, Nandewar mountains, and their bearing on the origin of certain ultramafic inclusions in alkaline volcanic rocks. Contributions to Mineralogy and Petrology 51, 235–62.CrossRefGoogle Scholar
Wilkinson, J. F. G. & Le Maitre, R. W. 1987. Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100 Mg/(Mg + Fe2+) ratios of common basalts and andesites: Implications for modal mantle metasomatism and undepleted mantle compositions. Journal of Petrology 28, 3773.CrossRefGoogle Scholar
Wilshire, H. G. & Shervais, J. W. 1975. Al-augite and Crdiopside ultramafic xenoliths in basaltic rocks from western United States. In Physics and chemistry of the earth, vol. 9 (eds Ahrens, L. H. et al. ), pp. 257–72. Oxford: Pergamon.CrossRefGoogle Scholar
Wood, B. J. & Banno, S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology 42, 109–24.CrossRefGoogle Scholar
Wood, B. J. & Virgo, D. 1989. Upper mantle oxidation state: Ferric iron contents of lherzolite spinels by 57Fe Mossbauer spectroscopy and resultant oxygen fugacities. Geochimica et Cosmochimica Acta 53, 1277–91.CrossRefGoogle Scholar
Wood, D. A., Joron, J.-L., Treuil, M., Norry, M. & Tarney, J. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology 70, 319–39.CrossRefGoogle Scholar
Zbyszewski, G., Veiga Ferreira, O., Candido de Medeiros, A., Aires-Barros, L., Celestino Silva, L., Munha, J. & Barriga, F. 1975. Noticia explicativa das folhas A e B da Ilha da Madeira. Carta Geologica de Portugal na escala 1/50 000. Lisboa: Servicos Geolgicos de Portugal.Google Scholar