Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-15T23:27:31.894Z Has data issue: false hasContentIssue false

Manganese mutagenesis in yeast: II. Conditions of induction and characteristics of mitochondrial respiratory deficient Saccharomyces cerevisiae mutants induced with manganese and cobalt

Published online by Cambridge University Press:  14 April 2009

Wieslawa Prazmo
Affiliation:
Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, Warsaw, Poland
Ewa Balbin
Affiliation:
Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, Warsaw, Poland
Hanna Baranowska
Affiliation:
Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, Warsaw, Poland
Anna Ejchart
Affiliation:
Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, Warsaw, Poland
Aleksandra Putrament
Affiliation:
Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Rakowiecka 36, Warsaw, Poland

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Manganese and cobalt are capable of inducing ρ mutations* in non-growing cells of Saccharomyces cerevisiae, but their mutagenic action is much stronger in growing cells. At a given concentration cobalt and manganese can be either strongly mutagenic or non-mutagenic, depending on the cell density.

Most of the ρ mutants induced with manganese and a considerable proportion of those induced with cobalt are suppressive and/or transmit drug resistance markers, so they must still carry mitochondrial DNA. Cobalt can decrease suppressiveness with low efficiency and eliminate drug resistance markers from established ρ clones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Biliński, T., Litwińska, J., Żuk, J. & Gajewski, W. (1973). Synchronization of zygote production in Saccharomyces cerevisiae. Journal of General Microbiology 79, 285292.Google Scholar
Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P. P., Bolotin-Fukuhara, M. & Coen, D. (1974). Mitochondrial genetics. VI. The petite mutation in Saccharomyces cerevisiae: interrelations between the loss of the ρ factor and the drug resistance mito-chondrial genetic markers. Genetics 76, 195219.CrossRefGoogle Scholar
Eisenstadt, E., Fisher, S., Chi-Lui, Der & Silver, S. (1973). Manganese transport in Bacillus subtilis W23 during growth and sporulation. Journal of Bacteriology 113, 13621372.CrossRefGoogle ScholarPubMed
Fisher, S., Buxbaum, L., Toth, K., Eisenstadt, E. & Silver, S. (1973). Regulation of manganese accumulation and exchange in Bacillus subtilis W23. Journal of Bacteriology 113, 13731380.Google Scholar
Fuhrmann, G. F. (1973). Aktiver Transport divalenter Kationen in Bäcker-Hefe in Beziehung zum Stoffwechsel, insbesondere der Gärung. Bern: Herbert Lang.Google Scholar
Fuhrmann, G. F. & Rothstein, A. (1968). The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochimica et Biophysica Acta 163, 325330.Google Scholar
Goldring, E., Grossman, L. I. & Marmur, J. (1971). Petite mutation in yeast. II. Isolation of mutants containing mitochondrial deoxyribonucleic acid of reduced size. Journal of Bacteriology 107, 377381.CrossRefGoogle ScholarPubMed
Goldring, E., Grossman, L. I., Krupnick, D., Cryer, D. R. & Marmur, J. (1970). The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. Journal of Molecular Biology 52, 323335.Google Scholar
Lindegren, C. C. & Lindegren, G. (1973). Mitochondrial modification and respiratory deficiency in the yeast cells caused by cadmium poisoning. Mutation Research 21, 315322.Google Scholar
Lindegren, C. C., Nagai, S. & Nagai, H. (1958). Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel. Nature 182, 446448.CrossRefGoogle ScholarPubMed
Michaelis, G., Douglass, S., Tsai, M. J. & Criddle, R. S. (1971). Mitochondrial DNA and suppressiveness of petite mutants in Saccharomyces cerevisiae. Biochemical Genetics 5, 487495.CrossRefGoogle ScholarPubMed
Moustacchi, E. (1972). Determination of the degree of suppressivity of Saccharomyces cerevisiae strain RD1A. Biochimica et biophysica Acta 277, 5960.Google Scholar
Nelson, D. L. & Kennedy, E. P. (1971). Magnesium transport in Escherichia coli. Inhibition by cobaltous ion. Journal of Biological Chemistry 246, 30423049.CrossRefGoogle ScholarPubMed
Paoletti, C., Conder, H. & Guerineau, M. (1972). A yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide. Biochemical and Biophysical Research Communications 48, 950958.Google Scholar
Putrament, A., Baranowska, H. & Prazmo, W. (1973). Induction by manganese of mitochondrial antibiotic resistance mutations in yeast. Molecular and General Genetics 126, 357366.Google Scholar
Saunders, G. W., Gingold, E. B., Trembath, M. K., Lukins, H. B. & Linnane, A. W. (1971). Mitochondrial genetics in yeast: Segregation of a cytoplasmic determinant in crosses and its loss or retention in the petite. In Autonomy and Biogenesis of Mitochondria and Chloroplasts (ed. Boardman, N. K., Linnane, A. W. and Smilkie, R. M.), pp. 185193. North-Holland Publ. Comp.Google Scholar
Sherman, F. & Ephrussi, B. (1962). The relationship between respiratory deficiency and suppressiveness in yeast as determined with segregational mutants. Genetics, Princeton 47, 695700.Google Scholar
Silver, S., Johnseine, P. & King, K. (1970). Manganese active transport in Escherichia ccli. Journal of Bacteriology 104, 12991306.Google Scholar
Silver, S., Johnseine, P., Whitney, E. & Clark, D. (1972). Manganese-resistant mutants of Escherichia coli: Physiological and genetic studies. Journal of Bacteriology 110, 186195.CrossRefGoogle ScholarPubMed
Silver, S. & Kralovic, M. L. (1969). Manganese accumulation by Escherichia coli: Evidence for a specific transport system. Biochemical and Biophysical Research Communications 34, 640645.CrossRefGoogle ScholarPubMed
Slonimski, P. P., Perrodin, G. & Croft, J. H. (1968). Ethidium bromide induced mutations of yeast mitochondria. Complete transformation of cells into respiratory deficient non-chromosomal petite. Biochemical and Biophysical Research Communications 30, 232239.CrossRefGoogle Scholar
Thomas, D. Y. & Wilkie, D. (1968). Recombination of mitochondrial drug-resistance factors in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 30, 368372.Google Scholar
Waters, R. & Moustacchi, E. (1974). The fate of ultraviolet-induced pyrimidine dimers in the mitochondrial DNA of Saccharomyces cerevisiae following various post-irradiation cell treatments. Biochimica et biophysica Acta 366, 241250.CrossRefGoogle ScholarPubMed
Whittaker, P. A., Hammond, R. C. & Luha, A. A. (1972). Mechanism of mitochondrial mutation in yeast. Nature New Biology 238, 266268.CrossRefGoogle ScholarPubMed