Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-30T18:52:48.987Z Has data issue: false hasContentIssue false

Differential susceptibility to a trematode parasite among genotypes of the Mytilus edulis/galloprovincialis complex

Published online by Cambridge University Press:  14 April 2009

Christine Coustau*
Affiliation:
Laboratoire de Parasilologie Comparée (URA 698, CNRS), Université de Montpellier II, Pl. E. Bataillon, 34095 Montpellier cedex 5, France
François Renaud
Affiliation:
Laboratoire de Parasilologie Comparée (URA 698, CNRS), Université de Montpellier II, Pl. E. Bataillon, 34095 Montpellier cedex 5, France
Claude Maillard
Affiliation:
Laboratoire de Parasilologie Comparée (URA 698, CNRS), Université de Montpellier II, Pl. E. Bataillon, 34095 Montpellier cedex 5, France
Nicole Pasteur
Affiliation:
Institut des Sciences de l'evolution (URA 327, CNRS), Génétique et Environnement, Université de Montpellier II, Pl. E. Bataillon, 34095 Montpellier cedex 5, France
Bernard Delay
Affiliation:
Institut des Sciences de l'evolution (URA 327, CNRS), Génétique et Environnement, Université de Montpellier II, Pl. E. Bataillon, 34095 Montpellier cedex 5, France
*
* Corresponding author

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that parasitism by the trematode Prosorhynchus squamatus in parental and introgressed Mytilus edulis/galloprovincialis (Bivalvia) mussels occurs in individuals with a predominantly M. edulis genome. This result suggests that the restricted specificity of P. squamatus is dependent on genetic factor(s) present in M. edulis. Because of its strong pathogenic effects (i.e. total castration and possible death), this parasite may be a source of intense selection against M. edulis genomes when they are present in a site. As a consequence, it may favour the geographic extension of the M. galloprovincialis genome. Previous studies have indicated that, in hybrid zones, recombinant genotypes are more susceptible to parasitic infections than either parental genotype. We demonstrate that this is not the case for the M. edulis/M. galloprovincialis system, and that the parental genotype alone determines susceptibility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Barton, N. H. & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics 16, 113148.CrossRefGoogle Scholar
Barton, N. H. & Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones. Nature (London) 341, 497502.CrossRefGoogle ScholarPubMed
Beaumont, A. R., Seed, R. & Garcia-Martinez, P. (1989). Electrophoretic and morphometric criteria for the identification of the mussels Mytilus edulis and M. galloprovincialis. In Reproduction, Genetics and Distribution of Marine Organisms (ed. Ryland, J. S. and Tyler, P. A.), pp. 251258. Fredensborg, Denmark: Olsen & Olsen.Google Scholar
Benzécri, J. P. & Coll, X. (1973). L'analyse des données. Paris: Dunot.Google Scholar
Cheng, T. C. (1986). General Parasitology, 2nd edn, pp. 299378. New York: Academic Press.CrossRefGoogle Scholar
Chubrik, G. M. (1966). Fauna and ecology of larval trematode parasites in molluscs of Barents and White seas. Trudy Akademiia Nauk SSSR 10, 78158.Google Scholar
Coustau, C., Combes, C., Maillard, C., Renaud, F. & Delay, B. (1990). Prosorhynchus squamatus (Trematoda) parasitosis in the Mytilus edulis-Mytilus galloprovincialis complex: specificity and host-parasite relationships. In Pathology in Marine Sciences (ed. Cheng, T. C. & Perkins, F. O.), pp. 291298. New York: Academic Press.Google Scholar
Gardner, J. P. A. & Skibinski, D. O. F. (1988). Historical and size-dependent genetic variation in hybrid mussel populations. Heredity 61, 93105.CrossRefGoogle Scholar
Gosling, E. M. (1984). The systematic status of Mytilus galloprovincialis in Western Europe: a review. Malacologia 25 (2), 551568.Google Scholar
Gosling, E. M. & Wilkins, N. P. (1981). Ecological genetics of the mussels Mytilus edulis and M. galloprovincialis on Irish Coast. Marine Ecology Progress Series 4, 221227.CrossRefGoogle Scholar
Hewitt, G. M. (1988). Hybrid zones – natural laboratories for evolutionary studies. Trends in Ecology and Evolution 3, 158167.CrossRefGoogle ScholarPubMed
Key, K. H. L. (1981). The concept of stasipatric speciation. Systematic Zoology 30, 425458.CrossRefGoogle Scholar
Lebart, L., Morineau, A. & Warwick, K. A. (1984). Multivariate Descriptive Statistical Analysis. New York: John Wiley & Sons.Google Scholar
Lewis, J. R. & Seed, R. (1969). Morphological variations in Mytilus from south-east England in relation to the occurrence of M. galloprovincialis (Lmk). Cahiers de Biologie Marine 10, 231253.Google Scholar
Lubet, P., Prunus, G., Masson, M. & Bucaille, D. (1984). Recherches expérimentales sur l'hybridation de Mytilus edulis L. et M. galloprovincialis Lmk (Mollusques lamelli-branches). Bulletin de la Société Zoologique de France 109, (1), 8798.Google Scholar
Matthews, R. A. (1972). The life-cycle of Prosorhynchus crucibulum (Rudolphi, 1819) Odhner, 1905, and comparison of its cercaria with that of Prosorhynchus squamatus Odhner, 1905. Parasitology 66, 133164.CrossRefGoogle Scholar
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J. & Britton-Davidian, J. (1988). Practical Isozyme Genetics. Chichester: Ellis Horwood.Google Scholar
Sage, R. D., Heyneman, D., Lim, K. C. & Wilson, A. C. (1986). Wormy mice in a hybrid zone. Nature (London) 324, 6063.CrossRefGoogle Scholar
Scherrer, B. (1984). Biostatistiques. Quebec, Canada: Gaetan Morin.Google Scholar
Seed, R. (1972). Morphological variation in Mytilus from the French coasts in relation to the occurrence and distribution of M. galloprovincialis. Cahiers de Biologie Marine 13, 357384.Google Scholar
She, X. J., Autem, M., Kotulas, G., Pasteur, N. & Bonhomme, F. (1987). Multivariate analysis of genetic exchanges between Solea aegyptiaca and Solea senegalensis (Teleosts, Soleidae). Biological Journal of the Linnaean Society 32, 357371.CrossRefGoogle Scholar
Skibinski, D. O. F. (1983). Natural selection in hybrid mussel populations. Systematics Association 24, 283297.Google Scholar
Skibinski, D. O. F., Ahmad, M. & Beardmore, J. A. (1978). Genetic evidence for naturally occurring hybrids between Mytilus edulis and Mytilus galloprovincialis. Evolution 32, 354364.CrossRefGoogle ScholarPubMed
Skibinski, D. O. F. & Beardmore, J. A. (1979). A genetic study of intergradation between Mytilus edulis and Mytilus galloprovincialis. Experientia 32, 14421444.CrossRefGoogle Scholar
Skibinski, D. O. F., Cross, T. F. & Ahmad, M. (1980). Electrophoretic investigation of systematic relationships in the marine mussels Modiolus modiolus L., Mytilus edulis L. and Mytilus galloprovincialis Lmk. (Mytilidae, Mollusca). Biological Journal of the Linnaean Society 13, 6573.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. San Francisco: Freeman and Co.Google Scholar
Whitham, T. G. (1989). Plant hybrid zone as sink for pests. Science 244, 14901493.CrossRefGoogle Scholar