Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T12:41:13.076Z Has data issue: false hasContentIssue false

Whittaker coefficients of geometric Eisenstein series

Published online by Cambridge University Press:  16 October 2024

Jeremy Taylor*
Affiliation:
Department of Mathematics, University of California, Berkeley, 970 Evans Hall, 94720-3840, USA

Abstract

Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions on the moduli space of $\check {N}$-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein series as factorization homology and then invoking Beilinson and Drinfeld’s formula for chiral homology of a chiral enveloping algebra.

Type
Algebra
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press

1. Introduction

1.1. Notation and conventions

Let G be a simply connected complex reductive group with Langlands dual group $\check {G}$ defined over . Choose a maximal torus T and a Borel subgroup B with unipotent radical N. Let $\rho $ be half the sum of the positive coroots. Let $X/k$ be a smooth projective complex genus g curve. Choose a square root of the canonical bundle on X and form the anticanonical T-bundle $\omega ^{-\rho }$ .

We work in the framework of [Reference Gaitsgory and Rozenblyum16]. In particular, all functors are derived and categories are by default presentable stable DG-categories.

Let $\sigma $ be a $\check {T}$ -local system on X, and let be the derived moduli stack of $\check {B}$ -local systems on X whose underlying $\check {T}$ -local system is identified with $\sigma $ ; see (1.3). A $\check {T}$ -local system is called regular if for every coroot, the associated rank 1 local system is nontrivial. If $\sigma $ is regular, then $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ is a classical affine scheme isomorphic to a vector space.

Let K be the Hecke $\sigma $ -eigensheaf on $\operatorname {\mathrm {Bun}}_T$ whose stalk at $\omega ^{-\rho }$ twisted by a negative coweight valued divisor $\underline {\lambda } \cdot \underline {x} = \sum \lambda _i x_i$ is

(1.1) $$ \begin{align} K_{\omega^{-\rho}(-\underline{\lambda} \cdot \underline{x})} \simeq \left(\bigotimes \sigma^{-\lambda_i}_{x_i}\right)[d_T + d^{\lambda}].\end{align} $$

Above, $\sigma ^{\lambda }_x$ means the fiber at x of the rank 1 local system . Here, and is the shift appearing in Section 6.4.8 of [Reference Gaitsgory13].

The Whittaker or Poincaré series sheaf on $\operatorname {\mathrm {Bun}}_G$ is the pullback then pushforward of the exponential sheaf along

$$\begin{align*}\mathbf{A}^1 \xleftarrow{\chi} {\mathrm{Bun}}_{N^-}^{\omega^{-\rho}} \xrightarrow{r} {\mathrm{Bun}}_G;\end{align*}$$

see 5.4.1 of [Reference Færgeman and Raskin10]. Here, D denotes Verdier duality. The function $\chi $ is defined for example in [Reference Frenkel, Gaitsgory and Vilonen9]. The character sheaf $\exp $ on $\mathbf {A}^1$ is normalized so that its costalks are in degree zero. If F is a $\mathbf {G}_m$ -constructible sheaf on $\mathbf {A}^1$ , then $\operatorname {\mathrm {Hom}}(\exp , F)[2]$ and $\operatorname {\mathrm {Hom}}(D \exp , F)$ both calculate t-exact vanishing cycles of F. The Whittaker sheaf does not have nilpotent singular support.

The automorphic and spectral Eisenstein series functors, and , are defined by pullback then pushforward along

$$\begin{align*}{\mathrm{Bun}}_T \xleftarrow{q} {\mathrm{Bun}}_B \xrightarrow{p} {\mathrm{Bun}}_G \quad \text{and} \quad {\mathrm{Loc}}_{\check{T}} \xleftarrow{\check{q}} {\mathrm{Loc}}_{\check{B}} \xrightarrow{\check{p}} {\mathrm{Loc}}_{\check{G}}.\end{align*}$$

All of the above functors are left adjoints. For example, $\check {p}^{\operatorname {\mathrm {IndCoh}}}_*$ is defined because $\check {p}$ is schematic, and a left adjoint because $\check {p}$ is proper.

1.2. Main theorem statement

Write $\operatorname {\mathrm {Shv}}_{\operatorname {\mathrm {Nilp}}}(\operatorname {\mathrm {Bun}}_G)$ for the DG-category of ind-constructible sheaves on $\operatorname {\mathrm {Bun}}_G$ with singular support [Reference Kashiwara and Schapira20] in the global nilpotent cone [Reference Ginzburg14]. Let $\operatorname {\mathrm {Loc}}_{\check {G}}$ be the restricted moduli space of $\check {G}$ -local systems on X [Reference Arinkin, Gaitsgory, Kazhdan, Raskin, Rozenblyum and Varshavsky3]. Write $\operatorname {\mathrm {IndCoh}}_{\operatorname {\mathrm {Nilp}}}(\operatorname {\mathrm {Loc}}_{\check {G}})$ for the DG-category of ind-coherent sheaves with nilpotent singular support [Reference Arinkin and Gaitsgory2].

The geometric Langlands conjecture is supposed to be compatible with parabolic induction. Moreover, the Whittaker functional is expected to correspond under Langlands to global sections on $\operatorname {\mathrm {Loc}}_{\check {G}}$ (up to a shift by ). Thus, commutativity of conjectural (since this paper was written, a proof was announced) diagram

(1.2)

applied to the skyscraper $k_{\sigma }$ predicts the following isomorphism.

Main Theorem 1.1. Let $\sigma $ be a $\check {T}$ -local system on X and let K be the Hecke eigensheaf on $\operatorname {\mathrm {Bun}}_T$ defined in (1.1). Whittaker coefficients of Eisenstein series equals functions on moduli space of $\check {N}$ -local systems:

$$\begin{align*}{\mathrm{Hom}}({\mathrm{Whit}}, {\mathrm{Eis}}_! K)[d_G] \simeq \mathcal{O}({\mathrm{Loc}}_{\check{N}}^{\sigma}).\end{align*}$$

The proof uses a combination of [Reference Raskin24] and [Reference Braverman and Gaitsgory6] to relate twisted cohomology of the Zastava space to the formal completion of $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ .

Both sides of the main theorem are coweight graded vector spaces. On the automorphic side, let $K^{\lambda }$ be the restriction to the degree $-\lambda - 2(g -1)\rho $ connected component $\operatorname {\mathrm {Bun}}_T^{\lambda }$ . On the spectral side, the adjoint $\check {T}$ -action on $\check {B}$ induces an action on $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ .

Remark 1.1. If we replace naive Eisenstein series by compactified Eisenstein series of [Reference Braverman and Gaitsgory5], then geometric Langlands predicts that $\operatorname {\mathrm {Hom}}(\operatorname {\mathrm {Whit}}, \operatorname {\mathrm {Eis}}_{!*}K')$ should equal global sections of a skyscraper sheaf at $\sigma \in \operatorname {\mathrm {Loc}}_{\check {G}}$ . This is verified by Gaitsgory in appendix B of [Reference Böckle, Harris, Khare and Thorne7].

1.3. Restricted, de Rham and Betti versions

Our results apply for all three versions of geometric Langlands [Reference Arinkin, Gaitsgory, Kazhdan, Raskin, Rozenblyum and Varshavsky3]. On the automorphic side, $\operatorname {\mathrm {Eis}}_!K$ is a constructible sheaf, equivalently regular holonomic D-module, with nilpotent singular support by [Reference Ginzburg14]. On the spectral side, there are three versions of the moduli space of local systems, all having the same complex valued points. For a unipotent group,

(1.3) $$ \begin{align} {\mathrm{Loc}}^{\sigma, {\mathrm{dR}}}_{\check{N}} \simeq {\mathrm{Loc}}^{\sigma, {\mathrm{restr}}}_{\check{N}} \simeq {\mathrm{Loc}}^{\sigma, {\mathrm{Betti}}}_{\check{N}} \end{align} $$

coincide by Proposition 4.3.3 and Section 4.8.1 of [Reference Arinkin, Gaitsgory, Kazhdan, Raskin, Rozenblyum and Varshavsky3].

In the Betti setting, there is no exponential D-module. Because $\chi $ is $\mathbf {C}^{\times }$ -equivariant for the $2\rho $ -action on $\operatorname {\mathrm {Bun}}_{N^-}^{\omega ^{-\rho }}$ and the weight 2 action on $\mathbf {A}^1$ , the sheaf defined in 2.5.2 of [Reference Nadler and Yun23] serves as a substitute.

1.4. Normalizations and shifts

First, we explain how the normalization (1.1) of the Hecke $\sigma $ -eigensheaf K matches the normalization $\operatorname {\mathrm {Eis}}_!((\omega ^{-\rho }-)[d^{\lambda }])$ appearing in (1.2) (as in Section 4.1 of [Reference Gaitsgory11] or Section 6.4.8 [Reference Gaitsgory13]). Let $K' \in \operatorname {\mathrm {Shv}}_{\operatorname {\mathrm {Nilp}}}(\operatorname {\mathrm {Bun}}_T)$ correspond under class field theory to the skyscraper sheaf $k_{\sigma } \in \operatorname {\mathrm {QCoh}}(\operatorname {\mathrm {Loc}}_{\check {T}})$ . The Hecke eigensheaf condition determines $K'$ up to tensoring by a line. Whittaker normalization says that global sections of $k_{\sigma }$ equals the costalk at the trivial T-bundle of $K'[d_T]$ . Thus, K is only noncanonically isomorphic to a shift of $K'$ . On the degree $-\lambda - 2(g - 1)\rho $ connected component $\operatorname {\mathrm {Bun}}_T^{\lambda }$ , there is a canonical identification $K \simeq \omega ^{-\rho } K'[d^{\lambda }]$ . We translated $K'$ by $\omega ^{-\rho }$ (having the effect of tensoring it by a certain line; see Section 4.1 of [Reference Gaitsgory11]).

Now we perform a consistence check. If $\sigma $ is a regular, then Theorem 10.2 of [Reference Braverman and Gaitsgory6] says that $\operatorname {\mathrm {Eis}}_!(K^{\lambda })[d_G - d_B^0]$ is perverse. The Whittaker functional $\operatorname {\mathrm {Hom}}(\operatorname {\mathrm {Whit}}, -)[d_B^0]$ is exact by [Reference Nadler and Taylor22] or [Reference Færgeman and Raskin10], so the automorphic side of the main theorem is concentrated in degree 0. This is consistent with $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ being a classical scheme if $\sigma $ is regular. Here,

(1.4)

is the dimension of the degree $-\lambda - 2(g - 1) \rho $ connected component.

1.5. Proof outline

It is convenient to take the coweight graded linear dual to avoid topological rings and because Lie algebra homology behaves better than Lie algebra cohomology. Here is the proof of our main theorem in one sentence:

(1.5) $$ \begin{align} \begin{aligned} {\mathrm{Hom}}&({\mathrm{Whit}}, {\mathrm{Eis}}_! K)^*[-d_G] \stackrel{({2.1})}{\simeq} \bigoplus_{\lambda}{\mathrm{Hom}}(\chi_Z^* D \exp, q_Z^! DK^{\lambda})[d_T + d^0] \\ &\stackrel{({2.4})}{\simeq} \bigoplus_{\lambda} \Gamma(X^{\lambda}, \Upsilon^{\lambda}_{\sigma}) \stackrel{({2.7})}{\simeq} \Gamma({\mathrm{Ran}}, C_{\bullet}(\check{\mathfrak{n}}_{\sigma})) \stackrel{({2.10})}{\simeq} C_{\bullet}(\Gamma(X, \check{\mathfrak{n}}_{\sigma})) \stackrel{({2.11})}{\simeq} \mathcal{O}({\mathrm{Loc}}_{\check{N}}^{\sigma})^*. \end{aligned} \end{align} $$

In Section 2.1, we use [Reference Nadler and Taylor22] or [Reference Færgeman and Raskin10] to exchange $\operatorname {\mathrm {Eis}}_!$ for a right adjoint, then apply base change and a result of [Reference Arinkin and Gaitsgory1] to get a calculation on the Zastava space. In Section 2.2, we pushforward to the space of positive coweight valued divisors and, by Theorem 4.6.1 of [Reference Raskin24], obtain a certain factorizable perverse sheaves $\Upsilon _{\sigma }^{\lambda }$ on $X^{\lambda }$ .

In Section 2.3, we interpret $\Upsilon _{\sigma }$ in terms of the chiral enveloping algebra of $\check {\mathfrak {n}}_{\sigma }$ as in [Reference Braverman and Gaitsgory6]. In Section 2.4, we explain, following [Reference Braverman and Gaitsgory6], how the cohomology of $\Upsilon _{\sigma }$ equals factorization homology of . Beilinson and Drinfeld’s formula says factorization homology of $C_{\bullet }(\check {\mathfrak {n}}_{\sigma })$ is Lie algebra homology of $\Gamma (X, \check {\mathfrak {n}}_{\sigma })$ . In Section 2.5, we study moduli of $\check {\mathfrak {n}}$ -local systems using deformation theory. Since $\Gamma (X, \check {\mathfrak {n}}_{\sigma })$ is the shifted tangent complex of $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ , its Lie algebra homology is related the formal completion of $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ at $\sigma $ . Using that $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma } \simeq (\operatorname {\mathrm {Spec}} R)/\check {N}$ is the quotient of an affine scheme by a unipotent group and using the contracting $\mathbf {G}_m$ -action, we show that $C_{\bullet }(\Gamma (X, \check {\mathfrak {n}}_{\sigma })) \simeq \mathcal {O}(\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma })^*$ is the graded linear dual ring of functions.

The idea of using factorization homology to study the formal completion of $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ is from [Reference Braverman and Gaitsgory6] and [Reference Gaitsgory12]. Proposition 3.4.4 of [Reference Gaitsgory12] (whose proof is omitted) implies an isomorphism $\bigoplus \Gamma (X^{\lambda }, D\Upsilon _{\sigma }^{\lambda }) \simeq \mathcal {O}(\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma })$ . For $\sigma $ regular, Propositions 11.3 and 11.4 of [Reference Braverman and Gaitsgory6] give an isomorphism between $\prod \Gamma (X^{\lambda }, \Upsilon _{\sigma }^{\lambda })^*$ and the completed ring of functions $\mathcal {O}(\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma })^{\wedge }$ . Sections 2.3 and 2.4 review some of their arguments and do not contain new content apart from filling in some details. Our main contribution is in Section 2.5, where we extend the results of [Reference Braverman and Gaitsgory6] to the more interesting case of irregular $\sigma $ , and we obtain a formula for the ring of functions on $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ (not just its formal completion) using the contracting $\mathbf {G}_m$ -action.

2. Proof of the main theorem

2.1. Base change to Zastava

In this section, we interpret Whittaker coefficients of Eisenstein series as twisted cohomology of the Zastava space Z.

The fiber product has a stratification indexed by the Weyl group, determined by the generic relative position of two flags. Let $j: Z \hookrightarrow Z'$ be the open inclusion of the locus where the two flags are generically transverse, called the Zastava space.

Consider the compositions

$$\begin{align*}q_{Z'}: Z' \rightarrow {\mathrm{Bun}}_B \rightarrow {\mathrm{Bun}}_T \quad \text{and} \quad \chi_{Z'}: Z' \rightarrow {\mathrm{Bun}}_{N^-}^{\omega^{-\rho}} \rightarrow \mathbf{A}^1\end{align*}$$

and let and be their restrictions to Z.

Proposition 2.1. There is an isomorphism

(2.1) $$ \begin{align} {\mathrm{Hom}}({\mathrm{Whit}}, {\mathrm{Eis}}_! K^{\lambda})^*[-d_G] \simeq {\mathrm{Hom}}(\chi_Z^* D\exp, q_Z^! DK^{\lambda})[d_T + d^0].\end{align} $$

Proof. We cannot directly apply adjunction to calculate Whittaker coefficients of Eisenstein series because $\operatorname {\mathrm {Eis}}_!$ is a left not right adjoint. It is shown in [Reference Færgeman and Raskin10] and [Reference Nadler and Taylor22] that the shifted Whittaker functional $\operatorname {\mathrm {Hom}}(\operatorname {\mathrm {Whit}}, -)[d_B^0]$ on nilpotent sheaves commutes with Verdier duality D. This allows us to exchange for . Then apply adjunction and base change to reduce to a calculation on the fiber product $Z'$ .

$$\begin{align*}{\mathrm{Hom}}({\mathrm{Whit}}, {\mathrm{Eis}}_! K^{\lambda})^*[-2d_B^0] \simeq {\mathrm{Hom}}({\mathrm{Whit}}, {\mathrm{Eis}}_*DK^{\lambda}) \simeq {\mathrm{Hom}}(\chi_{Z'}^* D\exp, q_{Z'}^!DK^{\lambda})\end{align*}$$

Finally, by Equation (3.5) of [Reference Arinkin and Gaitsgory1], restriction to the open generically transverse locus Z does not change the calculation. More precisely, the map

$$\begin{align*}{\mathrm{Hom}}(\chi_{Z'}^* D\exp, q_{Z'}^!DK^{\lambda}) \xrightarrow{\sim} {\mathrm{Hom}}(\chi_Z^* D\exp, q_Z^! DK^{\lambda})\end{align*}$$

is an isomorphism. For the shifts, use (1.4) and $d_G + d_T + d^0 = 2d_B^0$ .

2.2. Pushforward to the configuration space

In this section, we recall how to factor the projection $q_Z: Z^{\lambda } \rightarrow \operatorname {\mathrm {Bun}}_T^{\lambda }$ through the configuration space $X^{\lambda }$ of positive coweight valued divisors of total degree $\lambda $ . Hence, we obtain a description of the $\lambda $ -graded piece of Proposition 2.1 as cohomology of a certain perverse sheaf $\Upsilon ^{\lambda }_{\sigma }$ on $X^{\lambda }$ .

Let $(F, F^-, E) \in Z^{\lambda }$ be a point in the $\lambda $ connected component of Zastava space – that is, a G-bundle E equipped with generically transverse $B, B^-$ -reductions $F, F^-$ , such that F has degree $-\lambda - 2(g-1)\rho $ , and $F^- \times _{B^-} T$ is identified with $\omega ^{-\rho }$ . For each dominant weight $\check {\mu }$ , the Plucker description gives maps

(2.2) $$ \begin{align} F^{\check{\mu}} \rightarrow E^{\check{\mu}} \rightarrow (F^-)^{\check{\mu}} \simeq \omega^{-\langle \check{\mu}, \rho \rangle}.\end{align} $$

Here, is a line bundle and is the vector bundle associated to the simple G-module of highest weight $\check {\mu }$ .

By the generic transversality condition, the composition (2.2) is nonzero map of line bundles, so $\lambda $ is a non-negative coweight. For each point in the Zastava space, there is a unique positive coweight valued divisor $\underline {x} \cdot \underline {\lambda } \in X^{\lambda }$ such that (2.2) factors through an isomorphism $F^{\check {\mu }}(\langle \underline {x} \cdot \underline {\lambda }, \check {\mu } \rangle ) \simeq \omega ^{-\langle \check {\mu }, \rho \rangle }$ . Since G is assumed simply connected, we can write $\lambda = \sum n_i \alpha _i$ as a sum of simple coroots and $X^{\lambda } = \prod X^{(n_i)}$ as a product of symmetric powers of the curve. Therefore, $q_Z$ factors through a map $\pi $ to the configuration space followed by the Abel-Jacobi map,

$$\begin{align*}q_Z : Z^{\lambda} \xrightarrow{\pi} X^{\lambda} \xrightarrow{{\mathrm{AJ}}} {\mathrm{Bun}}_T^{\lambda}, \qquad (E, F, F^-) \mapsto \underline{x} \cdot \underline{\lambda} \mapsto \omega^{-\rho}(-\underline{x} \cdot \underline{\lambda}) \simeq F \times_B T.\end{align*}$$

Let $\lambda $ be a coweight and . Let , an $\check {\mathfrak {n}}$ -local system on X. The Chevalley complex on the coweight graded Ran space gives a $\prod S_{n_i}$ equivariant perverse sheaf $A_{X^n}$ on $\prod X^{n_i}$ . Let $\operatorname {\mathrm {sym}}^{\lambda }: X^n \rightarrow X^{\lambda }$ be the partial symmetrization map. There is a certain canonical summand $\Upsilon _{\sigma }^{\lambda } \subset (\operatorname {\mathrm {sym}}^{\lambda }_* A_{X^n})^{\prod S_{n_i}}$ whose stalk at $\underline {x} \cdot \underline {\lambda } \in X^{\lambda }$ is

(2.3) $$ \begin{align} (\Upsilon^{\lambda}_{\sigma})_{\underline{x} \cdot \underline{\lambda}} \simeq \bigotimes C_{\bullet}(\check{\mathfrak{n}}_{\sigma})^{\lambda_i}_{x_i};\end{align} $$

see Section 3.1 of [Reference Braverman and Gaitsgory6] and Section 4 of [Reference Raskin24]. (The definition of $\Upsilon _{\sigma }^{\lambda }$ involves the Chevalley differential, but the associated graded of $\Upsilon _{\sigma }^{\lambda }$ with respect to the Cousin filtration is easier to describe; see Section 3.3 of [Reference Braverman and Gaitsgory6].)

Remark 2.2. Since $\operatorname {\mathrm {sym}}^{\lambda }$ is finite, $\operatorname {\mathrm {sym}}^{\lambda }_* A_{X^n} \simeq \operatorname {\mathrm {sym}}^{\lambda }_! A_{X^n}$ is perverse by Artin vanishing. Since $\prod S_{n_i}$ -invariants is exact and commutes with taking (co)stalks, $\Upsilon _{\sigma }^{\lambda }$ is perverse.

Proposition 2.3. There is an isomorphism

(2.4) $$ \begin{align}{\mathrm{Hom}}(\chi_Z^* D\exp, q_Z^! DK^{\lambda})[d_T + d^0] \simeq \Gamma(X^{\lambda}, \Upsilon_{\sigma}^{\lambda}).\end{align} $$

Proof. Pushing forward to the configuration space $X^{\lambda }$ , the left of (2.4) becomes

$$\begin{align*}{\mathrm{Hom}}(\pi_! \chi_Z^* D \exp, {\mathrm{AJ}}^!DK^{\lambda})[d_T + d^0] \simeq \Gamma(\Upsilon^{\lambda} \otimes ({\mathrm{AJ}}^* K^{\lambda})^*)[d_T + d^{\lambda}] \simeq \Gamma(X^{\lambda}, \Upsilon^{\lambda}_{\sigma}).\end{align*}$$

We used that the configuration space $X^{\lambda }$ is smooth, so the dualizing sheaf is a rank 1 local system. And we used Theorem 4.6.1 of [Reference Raskin24], which says that

$$\begin{align*}D \pi_! \chi_{Z}^* D \exp \simeq \pi_*\chi_Z^! \exp \simeq \Upsilon^{\lambda}[d^{\lambda} - d^0].\end{align*}$$

Here, $d^{\lambda } - d^0 = \dim Z^{\lambda }$ , and $\Upsilon ^{\lambda }$ has stalks $\Upsilon ^{\lambda }_{\underline {x} \cdot \underline {\lambda }} \simeq \bigotimes C_{\bullet }(\check {\mathfrak {n}})^{\lambda _i}.$

Under class field theory (1.1), the stalks of $\operatorname {\mathrm {AJ}}^*K^{\lambda }$ are

$$\begin{align*}({\mathrm{AJ}}^* K^{\lambda})_{\underline{\lambda} \cdot \underline{x}} \simeq \left(\bigotimes \sigma^{-\lambda_i}_{x_i}\right)[d_T + d^{\lambda}]\end{align*}$$

and its $*$ -pullback to $\prod X^{n_i}$ is the $\prod S_{n_i}$ equivariant rank 1 local system $\boxtimes (\sigma ^{-\alpha _i})^{\boxtimes n_i}$ . By the projection formula, $\Upsilon ^{\lambda } \otimes (\operatorname {\mathrm {AJ}}^* K^{\lambda })^* \simeq \Upsilon _{\sigma }^{\lambda }$ .

Combining Propositions 2.1 and 2.3 shows Whittaker coefficients of Eisenstein series is graded dual to global sections of $\Upsilon _{\sigma }$ on the configuration space.

2.3. The chiral enveloping algebra as a Chevalley complex

The local system $\check {\mathfrak {n}}_{\sigma }$ determines a Lie* algebra on the Ran space. Its Lie algebra homology is a factorization algebra, related to $\Upsilon _{\sigma }$ by partial symmetrization (2.6).

A sheaf on the Ran space of X is a collection of sheaves $A_{X^I}$ on each power of the curve $X^I$ , together with compatibility isomorphisms for $!$ -restrictions along partial diagonal maps; see Section 2.1 of [Reference Francis and Gaitsgory8] for the precise definition. Recall from Section 1.2.1 of [Reference Francis and Gaitsgory8] that the category of sheaves on the Ran space admits two tensor products with a map $\otimes ^* \rightarrow \otimes ^{\operatorname {\mathrm {ch}}}$ between them.

Pushing forward along the main diagonal $\Delta : X \rightarrow \operatorname {\mathrm {Ran}}$ , we can regard $\Delta _* \check {\mathfrak {n}}_{\sigma } \in \operatorname {\mathrm {Shv}}(\operatorname {\mathrm {Ran}})$ as a Lie algebra for the $*$ -tensor product. Restricting to $X^2$ , the Lie* bracket $(\Delta _* \check {\mathfrak {n}}_{\sigma } \otimes ^* \Delta _* \check {\mathfrak {n}}_{\sigma })_{X^2} \simeq \check {\mathfrak {n}}_{\sigma } \boxtimes \check {\mathfrak {n}}_{\sigma } \rightarrow (\Delta _* \check {\mathfrak {n}}_{\sigma })_{X^2} \simeq \Delta _* \check {\mathfrak {n}}_{\sigma }$ comes by adjunction from the Lie bracket.

Let be Lie algebra homology of $\Delta _* \check {\mathfrak {n}}_{\sigma }$ with respect to the $*$ -tensor product, viewed by the forgetful functor as a cocommutative coalgebra with respect to the $\operatorname {\mathrm {ch}}$ -tensor product. Proposition 6.1.2 of [Reference Francis and Gaitsgory8] says that A corresponds to the chiral enveloping algebra of $\Delta _* \check {\mathfrak {n}}_{\sigma }$ under the equivalence between factorization and chiral algebras.

The Chevalley complex $A = \bigoplus A^{\lambda }$ is coweight graded because $\operatorname {\mathrm {Sym}} (\check {\mathfrak {n}}_{\sigma }[1])$ is coweight graded and because the Chevalley differential preserves the grading. Choose a coweight $\lambda $ and let . The sheaf $A^{\lambda }_{X^n}$ on $X^n$ is $S_n$ -equivariant and perverse. Symmetrize it along $\operatorname {\mathrm {sym}}: X^n \rightarrow X^{(n)}$ to get a perverse sheaf $(\operatorname {\mathrm {sym}}_*A^{\lambda }_{X^n})^{S_n}$ on the nth symmetric power. (In other words, we pushed forward $A^{\lambda }_{X^n}$ from the stack quotient $X^n/S_n$ to the coarse quotient $X^{(n)}$ .)

Now we describe a certain canonical summand $A^{\lambda }_{X^{(n)}} \subset (\operatorname {\mathrm {sym}}_*A^{\lambda }_{X^n})^{S_n}$ defined in Section 3 of [Reference Braverman and Gaitsgory6]. Let $X_i^{(n)} \subset X^{(n)}$ be the space of effective degree n divisors supported at exactly i points. The $!$ -restriction of $(\operatorname {\mathrm {sym}}_*A^{\lambda }_{X^n})^{S_n}$ to $X_i^{(n)}$ is a local system whose stalk at a divisor $\underline {n} \cdot \underline {x} \in X_i^{(n)}$ is given by

$$\begin{align*}({\mathrm{sym}}_*A^{\lambda}_{X^n_i})^{S_n}_{\underline{n} \cdot \underline{x}} \simeq \bigoplus_{\lambda = \sum \lambda_j} \bigotimes C_{\bullet}(\mathfrak{n}_{\sigma})^{\lambda_j}_{x_j}.\end{align*}$$

The $!$ -restriction of $A^{\lambda }_{X^{(n)}}$ to $X^{(n)}_i \subset X^{(n)}$ is the summand whose stalks are

(2.5) $$ \begin{align} (A^{\lambda}_{X^{(n)}_i})_{\underline{n} \cdot \underline{x}} \simeq \bigoplus_{\substack{\lambda = \sum \lambda_j, \\ \langle \check{\rho}, \lambda_j \rangle = n_j}} \bigotimes C_{\bullet}(\check{\mathfrak{n}}_{\sigma})_{x_j}^{\lambda_j}.\end{align} $$

By Section 11.6 of [Reference Braverman and Gaitsgory6], the pushforward of $\Upsilon _{\sigma }^{\lambda }$ – see (2.3) – along the partial symmetrization map $^{\lambda }\operatorname {\mathrm {sym}}:X^{\lambda } \rightarrow X^{(n)}$ is

(2.6) $$ \begin{align}^{\lambda}{\mathrm{sym}}_*\Upsilon_{\sigma}^{\lambda} \simeq A^{\lambda}_{X^{(n)}}.\end{align} $$

2.4. Factorization homology

In this section, we review, following [Reference Braverman and Gaitsgory6], how factorization homology of can be computed as cohomology on the symmetric power $X^{(n)}$ , where .

Let $\operatorname {\mathrm {FSet}}$ be the category whose objects are finite nonempty sets and whose morphisms are surjective maps. For each surjection $J \twoheadrightarrow I$ , there is a partial diagonal map $\Delta : X^I \rightarrow X^J$ . A sheaf on the Ran space comes with isomorphisms $A_{X^I} \simeq \Delta ^!A_{X^J}$ , so adjunction gives maps $\Delta _* A_{X^I} \rightarrow A_{X^J}$ . Factorization homology is defined in Section 6.3.3 of [Reference Francis and Gaitsgory8] or Section 4.2.2 of [Reference Beilinson and Drinfeld4] as the colimit over these maps

$$\begin{align*}\Gamma({\mathrm{Ran}}, A) \simeq \underset{{\mathrm{FSet}}^{{\mathrm{op}}}}{{\mathrm{colim}}} \Gamma(A_{X^I}).\end{align*}$$

The following proposition is stated in 11.6 of [Reference Braverman and Gaitsgory6], and below, we fill in the proof using the Cousin filtration and ideas from Section 4.2 of [Reference Beilinson and Drinfeld4].

Proposition 2.4. The cohomology of $\Upsilon _{\sigma }$ – see (2.3) – is the factorization homology of the Chevalley complex,

(2.7) $$ \begin{align} \bigoplus_{\lambda} \Gamma(X^{\lambda}, \Upsilon_{\sigma}^{\lambda}) \simeq \Gamma({\mathrm{Ran}}, A).\end{align} $$

Proof. Equation (2.6) relates $\Upsilon _{\sigma }$ to the symmetrization of A. Thus, it suffices to show that

(2.8) $$ \begin{align}\Gamma(X^{\lambda}, \Upsilon_{\sigma}^{\lambda}) \simeq \Gamma(A^{\lambda}_{X^{(n)}}) \rightarrow \Gamma(A^{\lambda}_{X^n}) \rightarrow \Gamma({\mathrm{Ran}}, A^{\lambda})\end{align} $$

is an isomorphism for . Indeed, we will prove that (2.8) is compatible with the Cousin filtration and that it induces an isomorphism on the associated graded pieces.

Consider the filtration on (2.8) whose $\leq i$ th filtered piece consists of sections supported on the partial diagonals of dimensions $\leq i$ . The ith graded piece is

(2.9) $$ \begin{align} \Gamma(A^{\lambda}_{X^{(n)}_i}) \rightarrow \Gamma(A^{\lambda}_{X^n_i}) \rightarrow \underset{{\mathrm{FSet}}^{{\mathrm{op}}}}{{\mathrm{colim}}} \Gamma(A^{\lambda}_{X^I_i}) \simeq {\mathrm{gr}}_i \Gamma({\mathrm{Ran}}, A^{\lambda}).\end{align} $$

Here, $A^{\lambda }_{X_i^{(n)}}$ is the !-restriction of $A^{\lambda }_{X^{(n)}}$ to the space $X_i^{(n)} \subset X^{(n)}$ of effective degree n divisors supported at exactly i points. Similarly, $A^{\lambda }_{X_i^I}$ is the !-restriction of $A^{\lambda }_{X^I}$ to the space $X_i^I \subset X^I$ of I-tuples supported at exactly i points.

The symmetric group $S_i$ acts freely on the space $X^i_i \subset X^i$ of distinct i-tuples of points. By Section 4.2.3 of [Reference Beilinson and Drinfeld4], the ith graded piece of the factorization homology of $A^{\lambda }$ is $\operatorname {\mathrm {gr}}_i \Gamma (\operatorname {\mathrm {Ran}}, A^{\lambda }) \simeq \Gamma (A^{\lambda }_{X^i_i})_{S_i}$ .

The connected components of $X^{(n)}_i$ are indexed by partitions $\underline {n} = n_1 + \dots n_i$ . Also, the local system $A^{\lambda }_{X^i_i}$ splits as a direct sum indexed by such partitions; see 6.4.9 of [Reference Francis and Gaitsgory8]. Restricting (2.9) to the connected component $X^{(\underline {n})}_i \subset X^{(n)}_i$ indexed by a certain partition,

$$\begin{align*}\Gamma(A^{\lambda}_{X^{(\underline{n})}_i}) \rightarrow {\mathrm{gr}}_i \Gamma({\mathrm{Ran}}, A^{\lambda}) \simeq \Gamma(A^{\lambda}_{X^i_i})_{S_i}\end{align*}$$

is an isomorphism onto the corresponding summand of $\Gamma (A^{\lambda }_{X^i_i})_{S_i}$ by (2.5). Summing over partitions shows that the ith graded piece of (2.8) is an isomorphism.

Since the factorization algebra corresponds to the chiral enveloping algebra $U(\check {\mathfrak {n}}_{\sigma })$ , Beilinson and Drinfeld’s formula for chiral homology of an enveloping algebra – see Theorem 4.8.1.1 of [Reference Beilinson and Drinfeld4] or 6.4.4 of [Reference Francis and Gaitsgory8] – says

(2.10) $$ \begin{align} \Gamma({\mathrm{Ran}}, A) \simeq C_{\bullet}(\Gamma(X, \check{\mathfrak{n}}_{\sigma})).\end{align} $$

2.5. Deformation theory

In this section, we show that

(2.11) $$ \begin{align} C_{\bullet}(\Gamma(X, \check{\mathfrak{n}}_{\sigma})) \simeq \mathcal{O}({\mathrm{Loc}}_{\check{N}}^{\sigma})^*,\end{align} $$

Lie algebra homology of the shifted tangent complex equals the graded dual ring of functions on $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ . Deformation theory says that $C_{\bullet }(\Gamma (X, \check {\mathfrak {n}}_{\sigma })) \simeq \Gamma ^{\operatorname {\mathrm {IndCoh}}}(\omega _{(\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma })^{\wedge }})$ is global sections of the dualizing sheaf on the formal completion at $\sigma $ . Using the structure of $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ described below, we recover the graded dual ring of functions on $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }$ , not just its completion, from $\Gamma ^{\operatorname {\mathrm {IndCoh}}}(\omega _{(\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma })^{\wedge }})$ .

First, we show that $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma } \simeq \operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma , x}/\check {N}$ is the quotient by a unipotent group of an affine derived scheme with a contracting $\mathbf {G}_m$ -action. Let (respectively, ) be the Betti moduli of $\check {B}$ (respectively, $\check {T}$ ) local systems trivialized at a point x. Let be the moduli of $\check {B}$ -local systems with underlying $\check {T}$ -local system identified with $\sigma $ , plus a $\check {T}$ -reduction at x.

Since $\check {T}$ is abelian, it acts by automorphisms on $\sigma \in \operatorname {\mathrm {Loc}}_{\check {T}}$ so there is a canonical lift $\sigma \in \operatorname {\mathrm {Loc}}_{\check {T}}^x$ . We also sometimes regard $\sigma $ as a point in $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma , x}$ via the inclusion $\check {T} \subset \check {B}$ .

Let $\check {B}$ act on $\operatorname {\mathrm {Loc}}_{\check {B}}^x$ by changing the trivialization at x, equivalently by the adjoint action on $\check {B}^{2g} \times _{\check {B}} 1$ . Restricting the adjoint action along $\check {\rho }$ gives a $\mathbf {G}_m$ -action that contracts $\check {B}$ to $\check {T}$ . Thus, we expect a $\mathbf {G}_m$ -action that contracts $\operatorname {\mathrm {Loc}}_{\check {B}}^x$ to $\operatorname {\mathrm {Loc}}_{\check {T}}^x$ , as is made precise below.

Proposition 2.5. The moduli space $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma , x} \simeq \operatorname {\mathrm {Spec}} R$ is a finite type affine scheme with a $\check {B}$ -action. Restricting the action along $\check {\rho }$ gives a non-negative grading $R = \bigoplus _{n \geq 0} R_n$ such that $\sigma \simeq \operatorname {\mathrm {Spec}} (R/R_{> 0})$ is cut out by the ideal of strictly positively graded functions.

Proof. We argue in the Betti setting, but the restricted and de Rham versions also follow by (1.3). First, rewrite

(2.12) $$ \begin{align} {\mathrm{Loc}}_{\check{N}}^{\sigma, x} \simeq {\mathrm{Loc}}_{\check{B}}^x \times_{{\mathrm{Loc}}_{\check{T}}^x} \sigma \simeq \check{B}^{2g} \times_{\check{T}^{2g} \times_{\check{T}} \check{B}} \sigma \simeq (\check{B}^{2g} \times_{\check{T}^{2g}} \sigma) \times_{\check{B} \times_{\check{T}} 1} 1 \simeq \operatorname{\mathrm{Spec}} (R' \otimes_S k).\end{align} $$

The contracting $\check {\rho }$ -action induces non-negative gradings on the classical rings and . Since $\check {N}$ is smooth, the augmentation module $k \simeq S/S_{> 0}$ admits a finite graded resolution by free S-modules, with all but one term shifted into strictly positive $\check {\rho }$ -gradings. Therefore, $R \simeq R' \otimes _S k$ is a finite type non-negatively graded ring and $\sigma \simeq \operatorname {\mathrm {Spec}} R/R_{>0}$ .

Now we review some derived deformation theory. Let $Y^{\wedge }$ be the formal completion of a derived stack Y at a point $\sigma $ . The shifted tangent bundle $T_{\sigma }Y[-1]$ is a DG Lie algebra whose enveloping algebra is endomorphisms of the skyscraper at $\sigma $ . By Chapter 7 of [Reference Gaitsgory and Rozenblyum17] or Remark 2.4.2 of [Reference Lurie21], there is an equivalence

$$\begin{align*}{\mathrm{Mod}}(T_{\sigma}Y[-1]) \simeq {\mathrm{IndCoh}}(Y^{\wedge})\end{align*}$$

between Lie algebra modules for the shifted tangent complex and indcoherent sheaves on the formal completion. Let $p: Y^{\wedge } \rightarrow \operatorname {\mathrm {pt}}$ be the map to a point. By Chapter 7, Section 5.2 of [Reference Gaitsgory and Rozenblyum17], the trivial $T_{\sigma }Y[-1]$ -module corresponds to the dualizing sheaf $\omega _{Y^{\wedge }} \simeq p^! k \in \operatorname {\mathrm {IndCoh}}(Y^{\wedge })$ . Moreover, Lie algebra homology corresponds to global sections

(2.13) $$ \begin{align} C_{\bullet}(T_{\sigma}Y[-1]) \simeq \Gamma^{{\mathrm{IndCoh}}}(\omega_{Y^{\wedge}}).\end{align} $$

Suppose $Y^{\wedge } \simeq \operatorname {\mathrm {Spec}} R$ is the spectrum of an Artinian local ring R. By properness, $p^!$ is right adjoint to $p_*^{\operatorname {\mathrm {IndCoh}}}$ . Therefore, the dualizing complex $\omega _{Y^{\wedge }} \simeq R^*$ is the linear dual of R viewed as an R-module.

Suppose $Y^{\wedge } \simeq \operatorname {\mathrm {Spf}} R^{\wedge } \simeq \operatorname {\mathrm {colim}} Y_n$ where $Y_n \simeq \operatorname {\mathrm {Spec}} R/\mathfrak {m}^n$ and let $i_n: Y_n \rightarrow Y^{\wedge }$ . Since $Y_n \rightarrow Y_{n+1}$ is proper, $\operatorname {\mathrm {IndCoh}}(Y^{\wedge })$ is the colimit under $*$ -pushforward of $\operatorname {\mathrm {IndCoh}}(Y_n)$ ; see Chapter 1, Proposition 2.5.7 of [Reference Gaitsgory and Rozenblyum16]. The dualizing sheaf can be written as a colimit, $\omega _{Y^{\wedge }} \simeq \operatorname {\mathrm {colim}} i_{n*}^{\operatorname {\mathrm {IndCoh}}} \omega _{Y_n}$ ; see Chapter 7, Corollary 5.3.3 of [Reference Gaitsgory and Rozenblyum17]. Since $\Gamma ^{\operatorname {\mathrm {IndCoh}}}(Y^{\wedge }, -)$ is continuous, it follows that

(2.14) $$ \begin{align} \Gamma^{{\mathrm{IndCoh}}}(\omega_{Y^{\wedge}}) \simeq {\mathrm{colim}} ((R/\mathfrak{m}^n)^*) \simeq (R^{\wedge})^*\end{align} $$

is the topological dual of the completed local ring $R^{\wedge }$ . In this case, Equation (2.13) is Corollary 5.2 of [Reference Hinich18].

Proposition 2.6. Let $R = \bigoplus _{n \geq 0} R_n$ be a non-negatively graded finite type derived ring with $R_0 \simeq k$ . Let $R^{\wedge }$ be the formal completion with respect to the ideal of positively graded functions. Then the graded dual equals the topological dual of the completion $(R^{\wedge })^*$ .

Proof. First, suppose R is classical and choose homogeneous generators $f_1, \dots f_r \in R$ . Let d be the maximum of their degrees, so $R_{\geq dn} \subset (f_1, \dots f_r)^n \subset R_{\geq n}$ . Therefore, the graded dual $R^*$ (linear functionals that vanish on some $R_{\geq n}$ ) equals the topologogical dual $(R^{\wedge })^*$ (linear functionals that vanish on some $(f_1, \dots f_r)^n$ ).

Now suppose that R is derived. The finite type assumption means that after taking cohomology, $H^{\bullet }(R)$ is a finitely generated module over $H^0(R)$ , a finitely generated graded classical ring. Choose a finite collection of homogeneous elements $f_1, \dots f_r \in R$ whose images generate $H^0(R)$ .

The formal completion is the topological ring

$$\begin{align*}R^{\wedge} \simeq R \otimes_{k[f_1, \dots f_r]} k[[f_1, \dots f_r]] \simeq \lim_n R \otimes_{k[f_1, \dots f_r]} (k[f_1, \dots f_r]/k[f_1, \dots f_r]_{> n}).\end{align*}$$

For the first equality, see Section 6.7 of [Reference Gaitsgory and Rozenblyum15]. The second equality uses that fiber products commute with filtered colimits and that $k[[f_1, \dots f_r]] \simeq \lim (k[f_1, \dots f_r]/k[f_1, \dots f_r]_{> n})$ . (The formal completion of a classical positively graded polynomial algebra can be computed using the grading filtration.)

Since $k[f_1, \dots f_r]$ is smooth, $R \otimes _{k[f_1, \dots f_r]}k[f_1, \dots f_r]/k[f_1, \dots f_r]_{>n}$ has finite dimensional cohomology and therefore is concentrated in bounded degrees. Hence, for m sufficiently large, the quotient map factors through

$$\begin{align*}R \rightarrow R/R_{> m} \rightarrow R \otimes_{k[f_1, \dots f_r]}k[f_1, \dots f_r]/k[f_1, \dots f_r]_{>n} \rightarrow R/R_{>n}.\end{align*}$$

Therefore, the formal completion of R can be computed using the grading filtration

$$\begin{align*}R^{\wedge} \simeq \lim_n R \otimes_{k[f_1, \dots f_r]} (k[f_1, \dots f_r]/k[f_1, \dots f_r]_{> n}) \simeq \lim_n R/R_{> n}.\end{align*}$$

Taking the topological dual proves $(R^{\wedge })^* \simeq \operatorname {\mathrm {colim}} ((R/R_{> n})^*) \simeq \bigoplus R_n^* \simeq R^*$ .

The following proposition shows (2.11), completing the final step of (1.5) and the proof of the main theorem.

Proposition 2.7. Lie algebra homology of the shifted tangent complex of equals the graded dual of the ring of functions,

$$\begin{align*}C_{\bullet}(T_{\sigma}Y[-1]) \simeq \mathcal{O}(Y)^*.\end{align*}$$

Proof. Write $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma , x} \simeq \operatorname {\mathrm {Spec}} R$ as in Proposition 2.5. Let $\check {N}$ act by changing the $\check {T}$ -reduction at x. Since $\check {T}$ normalizes $\check {N}$ , the quotient $Y \simeq (\operatorname {\mathrm {Spec}} R)/\check {N}$ retains the $\check {\rho }$ -action. The formal completion of Y at $\sigma $ is the inf-scheme $Y^{\wedge } \simeq \operatorname {\mathrm {Spf}}(R^{\wedge })/\exp (\check {\mathfrak {n}})$ , the quotient by the formal group $\exp (\check {\mathfrak {n}})$ .

Deformation theory says

$$\begin{align*}C_{\bullet}(T_{\sigma} Y[-1]) \simeq \Gamma^{{\mathrm{IndCoh}}}(\omega_{Y^{\wedge}}) \simeq ((R^{\wedge})^*)_{\check{\mathfrak{n}}}.\end{align*}$$

The first equality is equation (2.13). For the second equality, we pushed forward the dualizing sheaf $\omega _{Y^{\wedge }}$ in two steps,

$$\begin{align*}Y^{\wedge} \rightarrow {\mathrm{pt}}/\exp(\check{\mathfrak{n}}) \rightarrow {\mathrm{pt}}.\end{align*}$$

The pushforward of $\omega _{Y^{\wedge }}$ to $\operatorname {\mathrm {pt}}/\exp (\check {\mathfrak {n}})$ is an $\check {\mathfrak {n}}$ -module. By proper base change and (2.14), the underlying vector space is $\Gamma ^{\operatorname {\mathrm {IndCoh}}}(\omega _{\operatorname {\mathrm {Spf}} R^{\wedge }}) \simeq (R^{\wedge })^*$ and the $\check {\mathfrak {n}}$ -module structure comes from the $\check {N}$ -action. Further pushing forward along $\operatorname {\mathrm {pt}}/\exp (\check {\mathfrak {n}}) \rightarrow \operatorname {\mathrm {pt}}$ corresponds to taking $\check {\mathfrak {n}}$ -coinvariants, so $\Gamma ^{\operatorname {\mathrm {IndCoh}}}(\omega _{Y^{\wedge }}) \simeq ((R^{\wedge })^*)_{\check {\mathfrak {n}}}$ .

Now we show that $\check {\mathfrak {n}}$ -coinvariants of the topological dual of $R^{\wedge }$ equals the graded dual ring of functions on Y,

$$\begin{align*}((R^{\wedge})^*)_{\check{\mathfrak{n}}} \simeq {\mathrm{colim}} (((R/R_{> n})^*)_{\check{\mathfrak{n}}}) \simeq {\mathrm{colim}} (((R/R_{> n})^{\check{\mathfrak{n}}})^*) \simeq {\mathrm{colim}} (((R^{\check{\mathfrak{n}}} / (R^{\check{\mathfrak{n}}})_{> n})^*) \simeq (R^{\check{N}})^*.\end{align*}$$

The ideal $R_{> n}$ is an $\check {\mathfrak {n}}$ -module because the $\check {\mathfrak {n}}$ -action increases $\check {\rho }$ -weights. For the first equality, Proposition 2.6 says that $(R^{\wedge })^* \simeq \operatorname {\mathrm {colim}} ((R/R_{> n})^*)$ , and coinvariants commutes with colimits. For the second equality, $((R/R_{> n})^*)_{\check {\mathfrak {n}}} \simeq ((R/R_{> n})^{\check {\mathfrak {n}}})^*$ because $R/R_{> n}$ has finite dimensional cohomology. For the third equality, the image of $(R_{> n})^{\check {\mathfrak {n}}} \rightarrow R^{\check {\mathfrak {n}}}$ is concentrated in degrees $> n$ so we get a map $(R/R_{> n})^{\check {\mathfrak {n}}} \rightarrow R^{\check {\mathfrak {n}}}/(R^{\check {\mathfrak {n}}})_{>n}$ . Moreover, since $(R/R_{> n})^{\check {\mathfrak {n}}}$ is concentrated in bounded degrees, for m sufficiently large, the quotient map factors through

$$\begin{align*}R^{\check{\mathfrak{n}}} / (R^{\check{\mathfrak{n}}})_{> m} \rightarrow (R/R_{> n})^{\check{\mathfrak{n}}} \rightarrow R^{\check{\mathfrak{n}}}/(R^{\check{\mathfrak{n}}})_{> n}.\end{align*}$$

For the fourth equality, we used the van Est isomorphism; see Theorem 5.1 of [Reference Hochschild19]. Since $\check {N}$ is unipotent, Lie algebra cohomology $R^{\check {\mathfrak {n}}}$ coincides with group cohomology $R^{\check {N}}$ .

Example 2.8. Let $G = \operatorname {\mathrm {SL}}(2)$ and let $\sigma $ be a $\check {T}$ -local system, viewed as a rank 1 local system using the positive coroot. Then $\sigma $ is regular if and only if it is nontrivial.

If $\sigma $ is regular, then $\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma } \simeq H^1(X, \sigma )$ is a classical affine scheme because the other cohomologies vanish. The shifted tangent complex $T_{\sigma }\operatorname {\mathrm {Loc}}_{\check {N}}^{\sigma }[-1] \simeq H^1(X, \sigma )[-1]$ is an abelian Lie algebra with enveloping algebra . Lie algebra homology of the shifted tangent complex is

$$\begin{align*}k \otimes_U k \simeq {\mathrm{Sym}} H^1(X, \sigma) \simeq \mathcal{O}({\mathrm{Loc}}_{\check{N}}^{\sigma})^*.\end{align*}$$

If $\sigma $ is trivial, then $C_{\bullet }(T_{\sigma } \operatorname {\mathrm {Loc}}_{\check {N}}[-1]) \simeq \operatorname {\mathrm {Sym}}(H^2(X)[-1] \oplus H^1(X) \oplus H^0(X)[1])$ is the graded dual ring of functions on $\operatorname {\mathrm {Loc}}_{\check {N}} \simeq H^2(X)[-1] \times H^1(X) \times \operatorname {\mathrm {pt}}/H^0(X)$ .

Acknowledgements

I thank David Nadler for suggesting Whittaker coefficients of Eisenstein series and for generous discussions.

Funding statement

This work was partially supported by NSF grant DMS-1646385.

Competing interests

The authors have no competing interest to declare.

References

Arinkin, D. and Gaitsgory, D., ‘Asymptotics of geometric Whittaker coefficients’, (2015).Google Scholar
Arinkin, D. and Gaitsgory, D., ‘Singular support of coherent sheaves and the geometric Langlands conjecture’, Selecta Math. 21(1) (2015), 1199.CrossRefGoogle Scholar
Arinkin, D., Gaitsgory, D., Kazhdan, D., Raskin, S., Rozenblyum, N. and Varshavsky, Y., ‘The stack of local systems with restricted variation and geometric Langlands theory with nilpotent singular support’, Preprint, 2020, arXiv:2010.01906.Google Scholar
Beilinson, A. and Drinfeld, V., Chiral Algebras vol. 51 (American Mathematical Society, 2004).Google Scholar
Braverman, A. and Gaitsgory, D., ‘Geometric Eisenstein Series’, Invent. Math. 150 (2002), 287384.CrossRefGoogle Scholar
Braverman, A. and Gaitsgory, D., ‘Deformations of local systems and Eisenstein series’, Geom. Funct. Anal. 17 (2008), 17881850.CrossRefGoogle Scholar
Böckle, G., Harris, M., Khare, C. and Thorne, J., ‘G-local systems on smooth projective curves are potentially automorphic’, Acta Math. 223(1) (2019), 1111.CrossRefGoogle Scholar
Francis, J. and Gaitsgory, D., ‘Chiral Koszul duality’, Selecta Math. 18(1) (2012), 2787.CrossRefGoogle Scholar
Frenkel, E., Gaitsgory, D. and Vilonen, K., ‘Whittaker patterns in the geometry of moduli spaces of bundles on curves’, Ann. of Math. 153(3) (2001), 699748.CrossRefGoogle Scholar
Færgeman, J. and Raskin, S., ‘Non-vanishing of geometric Whittaker coefficients for reductive groups’, 2022.Google Scholar
Gaitsgory, D., Notes on Geometric Langlands: The Extended Whittaker Category, 2010.Google Scholar
Gaitsgory, D., What Acts on Geometric Eisenstein Series, 2011.Google Scholar
Gaitsgory, D., ‘Outline of the proof of the geometric Langlands conjecture for GL(2)’, Preprint, 2013, arXiv:1302.2506.Google Scholar
Ginzburg, V., ‘The global nilpotent variety is Lagrangian’, Duke Math. J. 109(3) (2001), 511519.CrossRefGoogle Scholar
Gaitsgory, D. and Rozenblyum, N., ‘DG indschemes’, Perspectives in Representation Theory 610 (2014), 139251.CrossRefGoogle Scholar
Gaitsgory, D. and Rozenblyum, N., A Study in Derived Algebraic Geometry: Volume I: Correspondences and Duality vol. 221 (2017).CrossRefGoogle Scholar
Gaitsgory, D. and Rozenblyum, N., A Study in Derived Algebraic Geometry: Volume II: Deformations, Lie Theory and Formal Geometry vol. 221 (2017).CrossRefGoogle Scholar
Hinich, V., ‘Descent of Deligne groupoids’, Preprint, 1996, arXiv:alg-geom/9606010.Google Scholar
Hochschild, G., ‘Cohomology of algebraic linear groups’, Illinois J. Math. 5(3) (1961), 492519.CrossRefGoogle Scholar
Kashiwara, M. and Schapira, P., Sheaves on Manifolds (Grundlehren der mathematis- chen Wissenschaften) vol. 292 (Springer, 1990).CrossRefGoogle Scholar
Lurie, J., DAG X: Formal moduli problems. 2011.Google Scholar
Nadler, D. and Taylor, J., ‘The Whittaker functional is a shifted microstalk’, Transform. Groups (2024), 126.Google Scholar
Nadler, D. and Yun, Z., ‘Geometric Langlands correspondence for SL(2), PGL(2) over the pair of pants’, Compos. Math. 155(2) (2019), 324371.CrossRefGoogle Scholar
Raskin, S., ‘Chiral principal series categories I: Finite dimensional calculations’, Adv. Math. 388 (2021), 107856.CrossRefGoogle Scholar