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Abstract
Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions
on the moduli space of �̌�-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein
series as factorization homology and then invoking Beilinson and Drinfeld’s formula for chiral homology of a chiral
enveloping algebra.
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1. Introduction

1.1. Notation and conventions

Let G be a simply connected complex reductive group with Langlands dual group �̌� defined over 𝑘 � C.
Choose a maximal torus T and a Borel subgroup B with unipotent radical N. Let 𝜌 be half the sum of
the positive coroots. Let 𝑋/𝑘 be a smooth projective complex genus g curve. Choose a square root of
the canonical bundle on X and form the anticanonical T-bundle 𝜔−𝜌.

We work in the framework of [16]. In particular, all functors are derived and categories are by default
presentable stable DG-categories.
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2 J. Taylor

Let 𝜎 be a 𝑇-local system on X, and let Loc𝜎
�̌�
� Loc�̌� ×Loc�̌� 𝜎 be the derived moduli stack of �̌�-

local systems on X whose underlying 𝑇-local system is identified with 𝜎; see (1.3). A 𝑇-local system is
called regular if for every coroot, the associated rank 1 local system is nontrivial. If 𝜎 is regular, then
Loc𝜎

�̌�
is a classical affine scheme isomorphic to a vector space.

Let K be the Hecke 𝜎-eigensheaf on Bun𝑇 whose stalk at 𝜔−𝜌 twisted by a negative coweight valued
divisor 𝜆 · 𝑥 =

∑
𝜆𝑖𝑥𝑖 is

𝐾𝜔−𝜌 (−𝜆·𝑥) �
(⊗

𝜎−𝜆𝑖𝑥𝑖

)
[𝑑𝑇 + 𝑑

𝜆] . (1.1)

Above, 𝜎𝜆𝑥 means the fiber at x of the rank 1 local system 𝜎𝜆 � 𝜎 ×�̌� 𝑘𝜆. Here, 𝑑𝑇 � dim Bun𝑇 and
𝑑𝜆 � 〈2�̌�, 4(𝑔 − 1)𝜌 + 𝜆〉 is the shift appearing in Section 6.4.8 of [13].

The Whittaker or Poincaré series sheaf Whit � 𝑟!𝜒
∗𝐷 exp � 𝑟! (−𝜒)

∗ exp[−2] on Bun𝐺 is the
pullback then pushforward of the exponential sheaf along

A1 𝜒
←− Bun𝜔

−𝜌

𝑁 −
𝑟
−→ Bun𝐺;

see 5.4.1 of [10]. Here, D denotes Verdier duality. The function 𝜒 is defined for example in [9]. The
character sheaf exp on A1 is normalized so that its costalks are in degree zero. If F is a G𝑚-constructible
sheaf on A1, then Hom(exp, 𝐹) [2] and Hom(𝐷 exp, 𝐹) both calculate t-exact vanishing cycles of F.
The Whittaker sheaf does not have nilpotent singular support.

The automorphic and spectral Eisenstein series functors, Eis! � 𝑝!𝑞
∗ and Ěis � 𝑝IndCoh

∗ 𝑞IndCoh ∗,
are defined by pullback then pushforward along

Bun𝑇
𝑞
←− Bun𝐵

𝑝
−→ Bun𝐺 and Loc�̌�

�̌�
←− Loc�̌�

�̌�
−→ Loc�̌� .

All of the above functors are left adjoints. For example, 𝑝IndCoh
∗ is defined because 𝑝 is schematic, and

a left adjoint because 𝑝 is proper.

1.2. Main theorem statement

Write ShvNilp(Bun𝐺) for the DG-category of ind-constructible sheaves on Bun𝐺 with singular support
[20] in the global nilpotent cone [14]. Let Loc�̌� be the restricted moduli space of �̌�-local systems on
X [3]. Write IndCohNilp(Loc�̌�) for the DG-category of ind-coherent sheaves with nilpotent singular
support [2].

The geometric Langlands conjecture is supposed to be compatible with parabolic induction. More-
over, the Whittaker functional is expected to correspond under Langlands to global sections on Loc�̌�
(up to a shift by 𝑑𝐺 � dim Bun𝐺). Thus, commutativity of conjectural (since this paper was written, a
proof was announced) diagram

ShvNilp(Bun𝑇 ) � QCoh(Loc�̌� )

ShvNilp(Bun𝐺) � IndCohNilp(Loc�̌�)

Vect

Eis! ( (𝜔
−𝜌−) [𝑑𝜆 ]) Ěis(−)

Hom(Whit,−) [𝑑𝐺 ] ΓIndCoh (−)

(1.2)

applied to the skyscraper 𝑘𝜎 predicts the following isomorphism.
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Main Theorem 1.1. Let 𝜎 be a 𝑇-local system on X and let K be the Hecke eigensheaf on Bun𝑇 defined
in (1.1). Whittaker coefficients of Eisenstein series equals functions on moduli space of �̌�-local systems:

Hom(Whit,Eis!𝐾) [𝑑𝐺] � O(Loc𝜎
�̌�
).

The proof uses a combination of [24] and [6] to relate twisted cohomology of the Zastava space to
the formal completion of Loc𝜎

�̌�
.

Both sides of the main theorem are coweight graded vector spaces. On the automorphic side, let 𝐾𝜆
be the restriction to the degree −𝜆 − 2(𝑔 − 1)𝜌 connected component Bun𝜆𝑇 . On the spectral side, the
adjoint 𝑇-action on �̌� induces an action on Loc𝜎

�̌�
.

Remark 1.1. If we replace naive Eisenstein series by compactified Eisenstein series of [5], then geo-
metric Langlands predicts that Hom(Whit,Eis!∗ 𝐾

′) should equal global sections of a skyscraper sheaf
at 𝜎 ∈ Loc�̌� . This is verified by Gaitsgory in appendix B of [7].

1.3. Restricted, de Rham and Betti versions

Our results apply for all three versions of geometric Langlands [3]. On the automorphic side, Eis! 𝐾 is a
constructible sheaf, equivalently regular holonomic D-module, with nilpotent singular support by [14].
On the spectral side, there are three versions of the moduli space of local systems, all having the same
complex valued points. For a unipotent group,

Loc𝜎,dR
�̌�
� Loc𝜎,restr

�̌�
� Loc𝜎,Betti

�̌�
(1.3)

coincide by Proposition 4.3.3 and Section 4.8.1 of [3].
In the Betti setting, there is no exponential D-module. Because 𝜒 is C×-equivariant for the 2𝜌-action

on Bun𝜔−𝜌𝑁 − and the weight 2 action on A1, the sheaf defined in 2.5.2 of [23] serves as a substitute.

1.4. Normalizations and shifts

First, we explain how the normalization (1.1) of the Hecke 𝜎-eigensheaf K matches the normalization
Eis! ((𝜔

−𝜌−)[𝑑𝜆]) appearing in (1.2) (as in Section 4.1 of [11] or Section 6.4.8 [13]). Let 𝐾 ′ ∈
ShvNilp(Bun𝑇 ) correspond under class field theory to the skyscraper sheaf 𝑘𝜎 ∈ QCoh(Loc�̌� ). The
Hecke eigensheaf condition determines 𝐾 ′ up to tensoring by a line. Whittaker normalization says that
global sections of 𝑘𝜎 equals the costalk at the trivial T-bundle of𝐾 ′[𝑑𝑇 ]. Thus, K is only noncanonically
isomorphic to a shift of 𝐾 ′. On the degree −𝜆 − 2(𝑔 − 1)𝜌 connected component Bun𝜆𝑇 , there is a
canonical identification 𝐾 � 𝜔−𝜌𝐾 ′[𝑑𝜆]. We translated 𝐾 ′ by 𝜔−𝜌 (having the effect of tensoring it by
a certain line; see Section 4.1 of [11]).

Now we perform a consistence check. If 𝜎 is a regular, then Theorem 10.2 of [6] says that
Eis! (𝐾

𝜆) [𝑑𝐺 − 𝑑
0
𝐵] is perverse. The Whittaker functional Hom(Whit,−)[𝑑0

𝐵] is exact by [22] or [10],
so the automorphic side of the main theorem is concentrated in degree 0. This is consistent with Loc𝜎

�̌�
being a classical scheme if 𝜎 is regular. Here,

𝑑𝜆𝐵 � (𝑔 − 1) dim 𝐵 + 〈2�̌�, 𝜆 + 2(𝑔 − 1)𝜌〉 = dim Bun𝜆𝐵 (1.4)

is the dimension of the degree −𝜆 − 2(𝑔 − 1)𝜌 connected component.

1.5. Proof outline

It is convenient to take the coweight graded linear dual to avoid topological rings and because Lie
algebra homology behaves better than Lie algebra cohomology. Here is the proof of our main theorem
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4 J. Taylor

in one sentence:

Hom(Whit,Eis!𝐾)
∗ [−𝑑𝐺]

(2.1)
�

⊕
𝜆

Hom(𝜒∗𝑍𝐷 exp, 𝑞!
𝑍𝐷𝐾

𝜆) [𝑑𝑇 + 𝑑
0]

(2.4)
�

⊕
𝜆

Γ(𝑋𝜆,Υ𝜆𝜎)
(2.7)
� Γ(Ran, 𝐶•(�̌�𝜎))

(2.10)
� 𝐶•(Γ(𝑋, �̌�𝜎))

(2.11)
� O(Loc𝜎

�̌�
)∗.

(1.5)

In Section 2.1, we use [22] or [10] to exchange Eis! for a right adjoint, then apply base change and
a result of [1] to get a calculation on the Zastava space. In Section 2.2, we pushforward to the space of
positive coweight valued divisors and, by Theorem 4.6.1 of [24], obtain a certain factorizable perverse
sheaves Υ𝜆𝜎 on 𝑋𝜆.

In Section 2.3, we interpretΥ𝜎 in terms of the chiral enveloping algebra of �̌�𝜎 as in [6]. In Section 2.4,
we explain, following [6], how the cohomology of Υ𝜎 equals factorization homology of 𝐴 � 𝐶•(�̌�𝜎).
Beilinson and Drinfeld’s formula says factorization homology of 𝐶•(�̌�𝜎) is Lie algebra homology of
Γ(𝑋, �̌�𝜎). In Section 2.5, we study moduli of �̌�-local systems using deformation theory. Since Γ(𝑋, �̌�𝜎)
is the shifted tangent complex of Loc𝜎

�̌�
, its Lie algebra homology is related the formal completion of

Loc𝜎
�̌�

at 𝜎. Using that Loc𝜎
�̌�
� (Spec 𝑅)/�̌� is the quotient of an affine scheme by a unipotent group and

using the contracting G𝑚-action, we show that 𝐶•(Γ(𝑋, �̌�𝜎)) � O(Loc𝜎
�̌�
)∗ is the graded linear dual

ring of functions.
The idea of using factorization homology to study the formal completion of Loc𝜎

�̌�
is from [6] and

[12]. Proposition 3.4.4 of [12] (whose proof is omitted) implies an isomorphism
⊕

Γ(𝑋𝜆, 𝐷Υ𝜆𝜎) �
O(Loc𝜎

�̌�
). For𝜎 regular, Propositions 11.3 and 11.4 of [6] give an isomorphism between

∏
Γ(𝑋𝜆,Υ𝜆𝜎)

∗

and the completed ring of functionsO(Loc𝜎
�̌�
)∧. Sections 2.3 and 2.4 review some of their arguments and

do not contain new content apart from filling in some details. Our main contribution is in Section 2.5,
where we extend the results of [6] to the more interesting case of irregular 𝜎, and we obtain a formula
for the ring of functions on Loc𝜎

�̌�
(not just its formal completion) using the contracting G𝑚-action.

2. Proof of the main theorem

2.1. Base change to Zastava

In this section, we interpret Whittaker coefficients of Eisenstein series as twisted cohomology of the
Zastava space Z.

The fiber product 𝑍 ′ � Bun𝐵 ×Bun𝐺 Bun𝜔−𝜌𝑁 − has a stratification indexed by the Weyl group, deter-
mined by the generic relative position of two flags. Let 𝑗 : 𝑍 ↩→ 𝑍 ′ be the open inclusion of the locus
where the two flags are generically transverse, called the Zastava space.

𝑍 ′

Bun𝐵 Bun𝜔−𝜌𝑁 −

Bun𝑇 Bun𝐺 A1
𝑝

𝑞 𝜒

𝑟

Consider the compositions

𝑞𝑍 ′ : 𝑍 ′ → Bun𝐵 → Bun𝑇 and 𝜒𝑍 ′ : 𝑍 ′ → Bun𝜔
−𝜌

𝑁 − → A1

and let 𝑞𝑍 � 𝑞𝑍 ′ 𝑗 and 𝜒𝑍 � 𝜒𝑍 ′ 𝑗 be their restrictions to Z.

Proposition 2.1. There is an isomorphism

Hom(Whit,Eis!𝐾
𝜆)∗ [−𝑑𝐺] � Hom(𝜒∗𝑍𝐷 exp, 𝑞!

𝑍𝐷𝐾
𝜆) [𝑑𝑇 + 𝑑

0] . (2.1)
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Proof. We cannot directly apply adjunction to calculate Whittaker coefficients of Eisenstein series
because Eis! is a left not right adjoint. It is shown in [10] and [22] that the shifted Whittaker functional
Hom(Whit,−)[𝑑0

𝐵] on nilpotent sheaves commutes with Verdier duality D. This allows us to exchange
Eis! � 𝑝!𝑞

∗ for Eis∗ � 𝑝∗𝑞
!. Then apply adjunction and base change to reduce to a calculation on the

fiber product 𝑍 ′.

Hom(Whit,Eis!𝐾
𝜆)∗ [−2𝑑0

𝐵] � Hom(Whit,Eis∗𝐷𝐾𝜆) � Hom(𝜒∗𝑍 ′𝐷 exp, 𝑞!
𝑍 ′𝐷𝐾

𝜆)

Finally, by Equation (3.5) of [1], restriction to the open generically transverse locus Z does not change
the calculation. More precisely, the map

Hom(𝜒∗𝑍 ′𝐷 exp, 𝑞!
𝑍 ′𝐷𝐾

𝜆)
∼
−→ Hom(𝜒∗𝑍𝐷 exp, 𝑞!

𝑍𝐷𝐾
𝜆)

is an isomorphism. For the shifts, use (1.4) and 𝑑𝐺 + 𝑑𝑇 + 𝑑0 = 2𝑑0
𝐵. �

2.2. Pushforward to the configuration space

In this section, we recall how to factor the projection 𝑞𝑍 : 𝑍𝜆 → Bun𝜆𝑇 through the configuration space
𝑋𝜆 of positive coweight valued divisors of total degree 𝜆. Hence, we obtain a description of the 𝜆-graded
piece of Proposition 2.1 as cohomology of a certain perverse sheaf Υ𝜆𝜎 on 𝑋𝜆.

Let (𝐹, 𝐹−, 𝐸) ∈ 𝑍𝜆 be a point in the 𝜆 connected component of Zastava space – that is, a G-bundle
E equipped with generically transverse 𝐵, 𝐵−-reductions 𝐹, 𝐹−, such that F has degree −𝜆 − 2(𝑔 − 1)𝜌,
and 𝐹− ×𝐵− 𝑇 is identified with 𝜔−𝜌. For each dominant weight �̌�, the Plucker description gives maps

𝐹 �̌� → 𝐸 �̌� → (𝐹−) �̌� � 𝜔−〈�̌�,𝜌〉 . (2.2)

Here, 𝐹 �̌� � 𝐹 ×𝐵 C�̌� is a line bundle and 𝐸 �̌� � 𝐸 ×𝐺 𝑉�̌� is the vector bundle associated to the simple
G-module of highest weight �̌�.

By the generic transversality condition, the composition (2.2) is nonzero map of line bundles, so 𝜆 is
a non-negative coweight. For each point in the Zastava space, there is a unique positive coweight valued
divisor 𝑥 · 𝜆 ∈ 𝑋𝜆 such that (2.2) factors through an isomorphism 𝐹 �̌� (〈𝑥 · 𝜆, �̌�〉) � 𝜔−〈�̌�,𝜌〉 . Since G is
assumed simply connected, we can write 𝜆 =

∑
𝑛𝑖𝛼𝑖 as a sum of simple coroots and 𝑋𝜆 =

∏
𝑋 (𝑛𝑖 ) as a

product of symmetric powers of the curve. Therefore, 𝑞𝑍 factors through a map 𝜋 to the configuration
space followed by the Abel-Jacobi map,

𝑞𝑍 : 𝑍𝜆 𝜋
−→ 𝑋𝜆

AJ
−−→ Bun𝜆𝑇 , (𝐸, 𝐹, 𝐹−) ↦→ 𝑥 · 𝜆 ↦→ 𝜔−𝜌 (−𝑥 · 𝜆) � 𝐹 ×𝐵 𝑇.

Let 𝜆 be a coweight and 𝑛 � 〈�̌�, 𝜆〉. Let �̌�𝜎 � 𝜎 ×�̌� �̌�, an �̌�-local system on X. The Chevalley
complex on the coweight graded Ran space gives a

∏
𝑆𝑛𝑖 equivariant perverse sheaf 𝐴𝑋𝑛 on

∏
𝑋𝑛𝑖 .

Let sym𝜆 : 𝑋𝑛 → 𝑋𝜆 be the partial symmetrization map. There is a certain canonical summand
Υ𝜆𝜎 ⊂ (sym𝜆∗ 𝐴𝑋𝑛 )

∏
𝑆𝑛𝑖 whose stalk at 𝑥 · 𝜆 ∈ 𝑋𝜆 is

(Υ𝜆𝜎)𝑥 ·𝜆 �
⊗

𝐶•(�̌�𝜎)
𝜆𝑖
𝑥𝑖 ; (2.3)

see Section 3.1 of [6] and Section 4 of [24]. (The definition of Υ𝜆𝜎 involves the Chevalley differential,
but the associated graded of Υ𝜆𝜎 with respect to the Cousin filtration is easier to describe; see Section
3.3 of [6].)

Remark 2.2. Since sym𝜆 is finite, sym𝜆∗ 𝐴𝑋𝑛 � sym𝜆! 𝐴𝑋𝑛 is perverse by Artin vanishing. Since
∏
𝑆𝑛𝑖 -

invariants is exact and commutes with taking (co)stalks, Υ𝜆𝜎 is perverse.
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Proposition 2.3. There is an isomorphism

Hom(𝜒∗𝑍𝐷 exp, 𝑞!
𝑍𝐷𝐾

𝜆) [𝑑𝑇 + 𝑑
0] � Γ(𝑋𝜆,Υ𝜆𝜎). (2.4)

Proof. Pushing forward to the configuration space 𝑋𝜆, the left of (2.4) becomes

Hom(𝜋!𝜒
∗
𝑍𝐷 exp,AJ!𝐷𝐾𝜆) [𝑑𝑇 + 𝑑

0] � Γ(Υ𝜆 ⊗ (AJ∗𝐾𝜆)∗) [𝑑𝑇 + 𝑑𝜆] � Γ(𝑋𝜆,Υ𝜆𝜎).

We used that the configuration space 𝑋𝜆 is smooth, so the dualizing sheaf is a rank 1 local system. And
we used Theorem 4.6.1 of [24], which says that

𝐷𝜋!𝜒
∗
𝑍𝐷 exp � 𝜋∗𝜒!

𝑍 exp � Υ𝜆 [𝑑𝜆 − 𝑑0] .

Here, 𝑑𝜆 − 𝑑0 = dim 𝑍𝜆, and Υ𝜆 has stalks Υ𝜆𝑥 ·𝜆 �
⊗

𝐶•(�̌�)𝜆𝑖 .

Under class field theory (1.1), the stalks of AJ∗ 𝐾𝜆 are

(AJ∗𝐾𝜆)𝜆·𝑥 �
(⊗

𝜎−𝜆𝑖𝑥𝑖

)
[𝑑𝑇 + 𝑑

𝜆]

and its ∗-pullback to
∏
𝑋𝑛𝑖 is the

∏
𝑆𝑛𝑖 equivariant rank 1 local system �(𝜎−𝛼𝑖 )�𝑛𝑖 . By the projection

formula, Υ𝜆 ⊗ (AJ∗ 𝐾𝜆)∗ � Υ𝜆𝜎 . �

Combining Propositions 2.1 and 2.3 shows Whittaker coefficients of Eisenstein series is graded dual
to global sections of Υ𝜎 on the configuration space.

2.3. The chiral enveloping algebra as a Chevalley complex

The local system �̌�𝜎 determines a Lie* algebra on the Ran space. Its Lie algebra homology 𝐴 � 𝐶•(�̌�𝜎)
is a factorization algebra, related to Υ𝜎 by partial symmetrization (2.6).

A sheaf on the Ran space of X is a collection of sheaves 𝐴𝑋 𝐼 on each power of the curve 𝑋 𝐼 , together
with compatibility isomorphisms for !-restrictions along partial diagonal maps; see Section 2.1 of [8]
for the precise definition. Recall from Section 1.2.1 of [8] that the category of sheaves on the Ran space
admits two tensor products with a map ⊗∗ → ⊗ch between them.

Pushing forward along the main diagonal Δ : 𝑋 → Ran, we can regard Δ∗�̌�𝜎 ∈ Shv(Ran) as a Lie
algebra for the ∗-tensor product. Restricting to 𝑋2, the Lie* bracket (Δ∗�̌�𝜎 ⊗∗ Δ∗�̌�𝜎)𝑋2 � �̌�𝜎 � �̌�𝜎 →
(Δ∗�̌�𝜎)𝑋2 � Δ∗�̌�𝜎 comes by adjunction from the Lie bracket.

Let 𝐴 � 𝐶•(�̌�𝜎) ∈ Shv(Ran) be Lie algebra homology ofΔ∗�̌�𝜎 with respect to the ∗-tensor product,
viewed by the forgetful functor as a cocommutative coalgebra with respect to the ch-tensor product.
Proposition 6.1.2 of [8] says that A corresponds to the chiral enveloping algebra of Δ∗�̌�𝜎 under the
equivalence between factorization and chiral algebras.

The Chevalley complex 𝐴 =
⊕

𝐴𝜆 is coweight graded because Sym(�̌�𝜎 [1]) is coweight graded
and because the Chevalley differential preserves the grading. Choose a coweight 𝜆 and let 𝑛 � 〈�̌�, 𝜆〉.
The sheaf 𝐴𝜆𝑋𝑛 on 𝑋𝑛 is 𝑆𝑛-equivariant and perverse. Symmetrize it along sym : 𝑋𝑛 → 𝑋 (𝑛) to get
a perverse sheaf (sym∗ 𝐴𝜆𝑋𝑛 )

𝑆𝑛 on the nth symmetric power. (In other words, we pushed forward 𝐴𝜆𝑋𝑛

from the stack quotient 𝑋𝑛/𝑆𝑛 to the coarse quotient 𝑋 (𝑛) .)
Now we describe a certain canonical summand 𝐴𝜆

𝑋 (𝑛)
⊂ (sym∗ 𝐴𝜆𝑋𝑛 )

𝑆𝑛 defined in Section 3 of [6].
Let 𝑋 (𝑛)𝑖 ⊂ 𝑋 (𝑛) be the space of effective degree n divisors supported at exactly i points. The !-restriction
of (sym∗ 𝐴𝜆𝑋𝑛 )

𝑆𝑛 to 𝑋 (𝑛)𝑖 is a local system whose stalk at a divisor 𝑛 · 𝑥 ∈ 𝑋 (𝑛)𝑖 is given by

(sym∗𝐴𝜆𝑋𝑛
𝑖
)𝑆𝑛𝑛 ·𝑥 �

⊕
𝜆=

∑
𝜆 𝑗

⊗
𝐶•(𝔫𝜎)

𝜆 𝑗
𝑥 𝑗 .
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The !-restriction of 𝐴𝜆
𝑋 (𝑛)

to 𝑋 (𝑛)𝑖 ⊂ 𝑋 (𝑛) is the summand whose stalks are

(𝐴𝜆
𝑋 (𝑛)𝑖

)𝑛 ·𝑥 �
⊕
𝜆=

∑
𝜆 𝑗 ,

〈�̌�,𝜆 𝑗 〉=𝑛 𝑗

⊗
𝐶•(�̌�𝜎)

𝜆 𝑗
𝑥 𝑗 . (2.5)

By Section 11.6 of [6], the pushforward of Υ𝜆𝜎 – see (2.3) – along the partial symmetrization map
𝜆 sym : 𝑋𝜆 → 𝑋 (𝑛) is

𝜆sym∗Υ𝜆𝜎 � 𝐴𝜆𝑋 (𝑛) . (2.6)

2.4. Factorization homology

In this section, we review, following [6], how factorization homology of 𝐴𝜆 � 𝐶•(�̌�𝜎)𝜆 can be computed
as cohomology on the symmetric power 𝑋 (𝑛) , where 𝑛 � 〈�̌�, 𝜆〉.

Let FSet be the category whose objects are finite nonempty sets and whose morphisms are surjective
maps. For each surjection 𝐽 � 𝐼, there is a partial diagonal map Δ : 𝑋 𝐼 → 𝑋 𝐽 . A sheaf on the Ran
space comes with isomorphisms 𝐴𝑋 𝐼 � Δ !𝐴𝑋 𝐽 , so adjunction gives mapsΔ∗𝐴𝑋 𝐼 → 𝐴𝑋 𝐽 . Factorization
homology is defined in Section 6.3.3 of [8] or Section 4.2.2 of [4] as the colimit over these maps

Γ(Ran, 𝐴) � colim
FSetop

Γ(𝐴𝑋 𝐼 ).

The following proposition is stated in 11.6 of [6], and below, we fill in the proof using the Cousin
filtration and ideas from Section 4.2 of [4].

Proposition 2.4. The cohomology of Υ𝜎 – see (2.3) – is the factorization homology of the Chevalley
complex,

⊕
𝜆

Γ(𝑋𝜆,Υ𝜆𝜎) � Γ(Ran, 𝐴). (2.7)

Proof. Equation (2.6) relates Υ𝜎 to the symmetrization of A. Thus, it suffices to show that

Γ(𝑋𝜆,Υ𝜆𝜎) � Γ(𝐴𝜆
𝑋 (𝑛)
) → Γ(𝐴𝜆𝑋𝑛 ) → Γ(Ran, 𝐴𝜆) (2.8)

is an isomorphism for 𝑛 � 〈�̌�, 𝜆〉. Indeed, we will prove that (2.8) is compatible with the Cousin
filtration and that it induces an isomorphism on the associated graded pieces.

Consider the filtration on (2.8) whose ≤ 𝑖th filtered piece consists of sections supported on the partial
diagonals of dimensions ≤ 𝑖. The ith graded piece is

Γ(𝐴𝜆
𝑋
(𝑛)
𝑖

) → Γ(𝐴𝜆𝑋𝑛
𝑖
) → colim

FSetop
Γ(𝐴𝜆

𝑋 𝐼
𝑖

) � gr𝑖Γ(Ran, 𝐴𝜆). (2.9)

Here, 𝐴𝜆
𝑋
(𝑛)
𝑖

is the !-restriction of 𝐴𝜆
𝑋 (𝑛)

to the space 𝑋 (𝑛)𝑖 ⊂ 𝑋 (𝑛) of effective degree n divisors supported

at exactly i points. Similarly, 𝐴𝜆
𝑋 𝐼
𝑖

is the !-restriction of 𝐴𝜆
𝑋 𝐼 to the space 𝑋 𝐼𝑖 ⊂ 𝑋 𝐼 of I-tuples supported

at exactly i points.
The symmetric group 𝑆𝑖 acts freely on the space 𝑋 𝑖𝑖 ⊂ 𝑋 𝑖 of distinct i-tuples of points. By Section

4.2.3 of [4], the ith graded piece of the factorization homology of 𝐴𝜆 is gr𝑖 Γ(Ran, 𝐴𝜆) � Γ(𝐴𝜆
𝑋 𝑖
𝑖

)𝑆𝑖 .

The connected components of 𝑋 (𝑛)𝑖 are indexed by partitions 𝑛 = 𝑛1 + . . . 𝑛𝑖 . Also, the local system
𝐴𝜆
𝑋 𝑖
𝑖

splits as a direct sum indexed by such partitions; see 6.4.9 of [8]. Restricting (2.9) to the connected
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component 𝑋 (𝑛)𝑖 ⊂ 𝑋 (𝑛)𝑖 indexed by a certain partition,

Γ(𝐴𝜆
𝑋
(𝑛)
𝑖

) → gr𝑖Γ(Ran, 𝐴𝜆) � Γ(𝐴𝜆
𝑋 𝑖
𝑖
)𝑆𝑖

is an isomorphism onto the corresponding summand of Γ(𝐴𝜆
𝑋 𝑖
𝑖

)𝑆𝑖 by (2.5). Summing over partitions
shows that the ith graded piece of (2.8) is an isomorphism. �

Since the factorization algebra 𝐴 � 𝐶•(�̌�𝜎) corresponds to the chiral enveloping algebra 𝑈 (�̌�𝜎),
Beilinson and Drinfeld’s formula for chiral homology of an enveloping algebra – see Theorem 4.8.1.1
of [4] or 6.4.4 of [8] – says

Γ(Ran, 𝐴) � 𝐶•(Γ(𝑋, �̌�𝜎)). (2.10)

2.5. Deformation theory

In this section, we show that

𝐶•(Γ(𝑋, �̌�𝜎)) � O(Loc𝜎
�̌�
)∗, (2.11)

Lie algebra homology of the shifted tangent complex equals the graded dual ring of functions on Loc𝜎
�̌�

.
Deformation theory says that 𝐶•(Γ(𝑋, �̌�𝜎)) � ΓIndCoh(𝜔 (Loc𝜎

�̌�
)∧ ) is global sections of the dualizing

sheaf on the formal completion at 𝜎. Using the structure of Loc𝜎
�̌�

described below, we recover the
graded dual ring of functions on Loc𝜎

�̌�
, not just its completion, from ΓIndCoh (𝜔 (Loc𝜎

�̌�
)∧ ).

First, we show that Loc𝜎
�̌�
� Loc𝜎,𝑥

�̌�
/�̌� is the quotient by a unipotent group of an affine derived

scheme with a contracting G𝑚-action. Let Loc𝑥
�̌�
� �̌�2𝑔 ×�̌� 1 (respectively, Loc𝑥

�̌�
� 𝑇2𝑔 ×�̌� 1) be the

Betti moduli of �̌� (respectively, 𝑇) local systems trivialized at a point x. Let Loc𝜎,𝑥
�̌�
� Loc𝑥

�̌�
×Loc𝑥

�̌�
𝜎 be

the moduli of �̌�-local systems with underlying 𝑇-local system identified with 𝜎, plus a 𝑇-reduction at x.
Since 𝑇 is abelian, it acts by automorphisms on 𝜎 ∈ Loc�̌� so there is a canonical lift 𝜎 ∈ Loc𝑥

�̌�
. We

also sometimes regard 𝜎 as a point in Loc𝜎,𝑥
�̌�

via the inclusion 𝑇 ⊂ �̌�.
Let �̌� act on Loc𝑥

�̌�
by changing the trivialization at x, equivalently by the adjoint action on �̌�2𝑔 ×�̌� 1.

Restricting the adjoint action along �̌� gives a G𝑚-action that contracts �̌� to 𝑇 . Thus, we expect a G𝑚-
action that contracts Loc𝑥

�̌�
to Loc𝑥

�̌�
, as is made precise below.

Proposition 2.5. The moduli space Loc𝜎,𝑥
�̌�
� Spec 𝑅 is a finite type affine scheme with a �̌�-action.

Restricting the action along �̌� gives a non-negative grading 𝑅 =
⊕

𝑛≥0 𝑅𝑛 such that 𝜎 � Spec(𝑅/𝑅>0)
is cut out by the ideal of strictly positively graded functions.

Proof. We argue in the Betti setting, but the restricted and de Rham versions also follow by (1.3). First,
rewrite

Loc𝜎,𝑥
�̌�
� Loc𝑥

�̌�
×Loc𝑥

�̌�
𝜎 � �̌�2𝑔 ×�̌� 2𝑔×�̌� �̌�

𝜎 � (�̌�2𝑔 ×�̌� 2𝑔 𝜎) ×�̌�×�̌� 1 1 � Spec(𝑅′ ⊗𝑆 𝑘). (2.12)

The contracting �̌�-action induces non-negative gradings on the classical rings 𝑅′ � O(�̌�2𝑔 ×�̌� 2𝑔 𝜎)
and 𝑆 � O(�̌� ×�̌� 1) � O(�̌�). Since �̌� is smooth, the augmentation module 𝑘 � 𝑆/𝑆>0 admits a finite
graded resolution by free S-modules, with all but one term shifted into strictly positive �̌�-gradings.
Therefore, 𝑅 � 𝑅′ ⊗𝑆 𝑘 is a finite type non-negatively graded ring and 𝜎 � Spec 𝑅/𝑅>0. �

Now we review some derived deformation theory. Let𝑌∧ be the formal completion of a derived stack
Y at a point 𝜎. The shifted tangent bundle 𝑇𝜎𝑌 [−1] is a DG Lie algebra whose enveloping algebra
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is endomorphisms of the skyscraper at 𝜎. By Chapter 7 of [17] or Remark 2.4.2 of [21], there is an
equivalence

Mod(𝑇𝜎𝑌 [−1]) � IndCoh(𝑌∧)

between Lie algebra modules for the shifted tangent complex and indcoherent sheaves on the formal
completion. Let 𝑝 : 𝑌∧ → pt be the map to a point. By Chapter 7, Section 5.2 of [17], the trivial
𝑇𝜎𝑌 [−1]-module corresponds to the dualizing sheaf 𝜔𝑌 ∧ � 𝑝!𝑘 ∈ IndCoh(𝑌∧). Moreover, Lie algebra
homology corresponds to global sections

𝐶•(𝑇𝜎𝑌 [−1]) � ΓIndCoh (𝜔𝑌 ∧). (2.13)

Suppose 𝑌∧ � Spec 𝑅 is the spectrum of an Artinian local ring R. By properness, 𝑝! is right adjoint
to 𝑝IndCoh

∗ . Therefore, the dualizing complex 𝜔𝑌 ∧ � 𝑅∗ is the linear dual of R viewed as an R-module.
Suppose 𝑌∧ � Spf 𝑅∧ � colim𝑌𝑛 where 𝑌𝑛 � Spec 𝑅/𝔪𝑛 and let 𝑖𝑛 : 𝑌𝑛 → 𝑌∧. Since 𝑌𝑛 → 𝑌𝑛+1

is proper, IndCoh(𝑌∧) is the colimit under ∗-pushforward of IndCoh(𝑌𝑛); see Chapter 1, Proposition
2.5.7 of [16]. The dualizing sheaf can be written as a colimit, 𝜔𝑌 ∧ � colim 𝑖IndCoh

𝑛∗ 𝜔𝑌𝑛 ; see Chapter 7,
Corollary 5.3.3 of [17]. Since ΓIndCoh(𝑌∧,−) is continuous, it follows that

ΓIndCoh (𝜔𝑌 ∧) � colim((𝑅/𝔪𝑛)∗) � (𝑅∧)∗ (2.14)

is the topological dual of the completed local ring 𝑅∧. In this case, Equation (2.13) is Corollary 5.2
of [18].

Proposition 2.6. Let 𝑅 =
⊕

𝑛≥0 𝑅𝑛 be a non-negatively graded finite type derived ring with 𝑅0 � 𝑘 . Let
𝑅∧ be the formal completion with respect to the ideal of positively graded functions. Then the graded
dual 𝑅∗ �

⊕
𝑅∗𝑛 equals the topological dual of the completion (𝑅∧)∗.

Proof. First, suppose R is classical and choose homogeneous generators 𝑓1, . . . 𝑓𝑟 ∈ 𝑅. Let d be the
maximum of their degrees, so 𝑅≥𝑑𝑛 ⊂ ( 𝑓1, . . . 𝑓𝑟 )

𝑛 ⊂ 𝑅≥𝑛. Therefore, the graded dual 𝑅∗ (linear
functionals that vanish on some 𝑅≥𝑛) equals the topologogical dual (𝑅∧)∗ (linear functionals that
vanish on some ( 𝑓1, . . . 𝑓𝑟 )𝑛).

Now suppose that R is derived. The finite type assumption means that after taking cohomology,
𝐻•(𝑅) is a finitely generated module over 𝐻0 (𝑅), a finitely generated graded classical ring. Choose a
finite collection of homogeneous elements 𝑓1, . . . 𝑓𝑟 ∈ 𝑅 whose images generate 𝐻0(𝑅).

The formal completion is the topological ring

𝑅∧ � 𝑅 ⊗𝑘 [ 𝑓1 ,... 𝑓𝑟 ] 𝑘 [[ 𝑓1, . . . 𝑓𝑟 ]] � lim
𝑛
𝑅 ⊗𝑘 [ 𝑓1 ,... 𝑓𝑟 ] (𝑘 [ 𝑓1, . . . 𝑓𝑟 ]/𝑘 [ 𝑓1, . . . 𝑓𝑟 ]>𝑛).

For the first equality, see Section 6.7 of [15]. The second equality uses that fiber products commute with
filtered colimits and that 𝑘 [[ 𝑓1, . . . 𝑓𝑟 ]] � lim(𝑘 [ 𝑓1, . . . 𝑓𝑟 ]/𝑘 [ 𝑓1, . . . 𝑓𝑟 ]>𝑛). (The formal completion
of a classical positively graded polynomial algebra can be computed using the grading filtration.)

Since 𝑘 [ 𝑓1, . . . 𝑓𝑟 ] is smooth, 𝑅 ⊗𝑘 [ 𝑓1 ,... 𝑓𝑟 ] 𝑘 [ 𝑓1, . . . 𝑓𝑟 ]/𝑘 [ 𝑓1, . . . 𝑓𝑟 ]>𝑛 has finite dimensional coho-
mology and therefore is concentrated in bounded degrees. Hence, for m sufficiently large, the quotient
map factors through

𝑅 → 𝑅/𝑅>𝑚 → 𝑅 ⊗𝑘 [ 𝑓1 ,... 𝑓𝑟 ] 𝑘 [ 𝑓1, . . . 𝑓𝑟 ]/𝑘 [ 𝑓1, . . . 𝑓𝑟 ]>𝑛 → 𝑅/𝑅>𝑛.

Therefore, the formal completion of R can be computed using the grading filtration

𝑅∧ � lim
𝑛
𝑅 ⊗𝑘 [ 𝑓1 ,... 𝑓𝑟 ] (𝑘 [ 𝑓1, . . . 𝑓𝑟 ]/𝑘 [ 𝑓1, . . . 𝑓𝑟 ]>𝑛) � lim

𝑛
𝑅/𝑅>𝑛.

Taking the topological dual proves (𝑅∧)∗ � colim((𝑅/𝑅>𝑛)∗) �
⊕

𝑅∗𝑛 � 𝑅
∗. �
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The following proposition shows (2.11), completing the final step of (1.5) and the proof of the main
theorem.

Proposition 2.7. Lie algebra homology of the shifted tangent complex of 𝑌 � Loc𝜎
�̌�

equals the graded
dual of the ring of functions,

𝐶•(𝑇𝜎𝑌 [−1]) � O(𝑌 )∗.

Proof. Write Loc𝜎,𝑥
�̌�
� Spec 𝑅 as in Proposition 2.5. Let �̌� act by changing the 𝑇-reduction at x. Since

𝑇 normalizes �̌� , the quotient 𝑌 � (Spec 𝑅)/�̌� retains the �̌�-action. The formal completion of Y at 𝜎 is
the inf-scheme 𝑌∧ � Spf (𝑅∧)/exp(�̌�), the quotient by the formal group exp(�̌�).

Deformation theory says

𝐶•(𝑇𝜎𝑌 [−1]) � ΓIndCoh(𝜔𝑌 ∧) � ((𝑅
∧)∗)�̌� .

The first equality is equation (2.13). For the second equality, we pushed forward the dualizing sheaf
𝜔𝑌 ∧ in two steps,

𝑌∧ → pt/exp(�̌�) → pt.

The pushforward of𝜔𝑌 ∧ to pt/exp(�̌�) is an �̌�-module. By proper base change and (2.14), the underlying
vector space is ΓIndCoh(𝜔Spf 𝑅∧) � (𝑅

∧)∗ and the �̌�-module structure comes from the �̌�-action. Further
pushing forward along pt/exp(�̌�) → pt corresponds to taking �̌�-coinvariants, so ΓIndCoh (𝜔𝑌 ∧) �
((𝑅∧)∗)�̌� .

Now we show that �̌�-coinvariants of the topological dual of 𝑅∧ equals the graded dual ring of
functions on Y,

((𝑅∧)∗)�̌� � colim(((𝑅/𝑅>𝑛)∗)�̌�) � colim(((𝑅/𝑅>𝑛)�̌�)∗) � colim(((𝑅�̌�/(𝑅�̌�)>𝑛)
∗) � (𝑅�̌� )∗.

The ideal 𝑅>𝑛 is an �̌�-module because the �̌�-action increases �̌�-weights. For the first equality, Proposition
2.6 says that (𝑅∧)∗ � colim((𝑅/𝑅>𝑛)∗), and coinvariants commutes with colimits. For the second
equality, ((𝑅/𝑅>𝑛)∗)�̌� � ((𝑅/𝑅>𝑛)�̌�)∗ because 𝑅/𝑅>𝑛 has finite dimensional cohomology. For the
third equality, the image of (𝑅>𝑛)�̌� → 𝑅�̌� is concentrated in degrees > 𝑛 so we get a map (𝑅/𝑅>𝑛)�̌� →
𝑅�̌�/(𝑅�̌�)>𝑛. Moreover, since (𝑅/𝑅>𝑛)�̌� is concentrated in bounded degrees, for m sufficiently large, the
quotient map factors through

𝑅�̌�/(𝑅�̌�)>𝑚 → (𝑅/𝑅>𝑛)
�̌� → 𝑅�̌�/(𝑅�̌�)>𝑛.

For the fourth equality, we used the van Est isomorphism; see Theorem 5.1 of [19]. Since �̌� is unipotent,
Lie algebra cohomology 𝑅�̌� coincides with group cohomology 𝑅�̌� . �

Example 2.8. Let 𝐺 = SL(2) and let 𝜎 be a 𝑇-local system, viewed as a rank 1 local system using the
positive coroot. Then 𝜎 is regular if and only if it is nontrivial.

If 𝜎 is regular, then Loc𝜎
�̌�
� 𝐻1(𝑋, 𝜎) is a classical affine scheme because the other cohomologies

vanish. The shifted tangent complex 𝑇𝜎 Loc𝜎
�̌�
[−1] � 𝐻1(𝑋, 𝜎) [−1] is an abelian Lie algebra with

enveloping algebra𝑈 � Sym(𝐻1 (𝑋, 𝜎) [−1]). Lie algebra homology of the shifted tangent complex is

𝑘 ⊗𝑈 𝑘 � Sym𝐻1 (𝑋, 𝜎) � O(Loc𝜎
�̌�
)∗.

If 𝜎 is trivial, then 𝐶•(𝑇𝜎 Loc�̌� [−1]) � Sym(𝐻2(𝑋) [−1] ⊕ 𝐻1 (𝑋) ⊕ 𝐻0(𝑋) [1]) is the graded dual
ring of functions on Loc�̌� � 𝐻2 (𝑋) [−1] × 𝐻1 (𝑋) × pt/𝐻0(𝑋).
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