Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T12:14:38.010Z Has data issue: false hasContentIssue false

Superhydrogenated PAHs: Catalytic formation of H2

Published online by Cambridge University Press:  30 March 2011

J.D. Thrower
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]
L. Nilsson
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]
B. Jørgensen
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]
S. Baouche
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]
R. Balog
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]
A.C. Luntz
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]
I. Stensgaard
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]
E. Rauls
Affiliation:
Department of Theoretical Physics, Faculty of Natural Sciences, University of Paderborn, 33098 Paderborn, Germany
L. Hornekær
Affiliation:
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark. e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The possible role of neutral PAHs as catalysts for H2 formation in the interstellar medium is investigated by a combined experimental and density function theory study of the superhydrogenation of coronene (C24H12). The calculations suggest efficient hydrogenation of both edge and centre sites, along with competing abstraction reactions to form H2 in a series of catalytic cycles. Scanning tunneling microscopy and thermal desorption measurements have been used to provide direct evidence of the formation of superhydrogenated coronene as a result of exposure to D atoms. Lower limit estimates for the cross-sections of 1.8 × 10-17, 5.5 × 10-18 and 1.1 × 10-18 cm2 for the formation of singly, doubly and triply hydrogenated coronene are derived. The results suggest that superhydrogenated PAHs may play an important role in H2 formation in the ISM.

Type
Research Article
Copyright
© EAS, EDP Sciences 2011

References

Bahn, S.R., & Jacobsen, K.W., 2002, Comput. Sci., 4, 56
Bauschlicher, C.W., 1998, ApJ, 509, L125 CrossRef
Bauschlicher, C.W., & Bakes, E.L.O., 2001, Chem. Phys., 274, 11 CrossRef
Bernstein, M.P., Sandford, S.A., & Allamandola, L.J., 1996, ApJ, 472, L127 CrossRef
Betts, N.B., Stepanovic, M., Snow, T.P., & Bierbaum, V.M., 2006, ApJ, 651, L129 CrossRef
Bierbaum, V.M., 2011, this volume
Cazaux, S., & Tielens, A.G.G.M., 2004, ApJ, 604, 222 CrossRef
Cuppen, H.M., & Herbst, E., 2005, MNRAS, 361, 565 CrossRef
Duley, W.W., & Williams, D.A., 1993, MNRAS, 260, 37 CrossRef
Habart, E., Boulanger, F., Verstraete, L., et al., 2003, A&A, 397, 623
Habart, E., Boulanger, F., Verstraete, L., Walmsley, C.M., & des Forets, G.P., 2004, A&A, 414, 531
Hammer, B., Hansen, L.B., & Norskov, J.K., 1999, Phys. Rev. B, 59, 7413 CrossRef
Hollenbach, D., & Salpeter, E.E., 1971, ApJ, 163, 155 CrossRef
Hornekær, L., Baurichter, A., Petrunin, V.V., Field, D., & Luntz, A.C., 2003, Science, 302, 1943 CrossRef
Hornekær, L., Rauls, E., Xu, W., et al., 2006a, Phys. Rev. Lett., 97, 186102 CrossRef
Hornekær, L., Sljivancanin, Z., Xu, W., et al., 2006b, Phys. Rev. Lett., 96, 156104 CrossRef
Katz, N., Furman, I., Biham, O., Pirronello, V., & Vidali, G., 1999, ApJ, 522, 305 CrossRef
Le Page, V., Snow, T.P., & Bierbaum, V.M., 2001, ApJS, 132, 233 CrossRef
Le Page, V., Snow, T.P., & Bierbaum, V.M., 2003, ApJ, 584, 316 CrossRef
Le Page, V., Snow, T.P., & Bierbaum, V.M., 2009, ApJ, 704, 274 CrossRef
LePage, V., Keheyan, Y., Bierbaum, V.M., & Snow, T.P., 1997, J. Am. Chem. Soc., 119, 8373 CrossRef
Manico, G., Raguni, G., Pirronello, V., Roser, J.E., & Vidali, G., 2001, ApJ, 548, L253 CrossRef
Mennella, V., 2006, ApJ, 647, L49 CrossRef
Mennella, V., Brucato, J.R., Colangeli, L., & Palumbo, P., 2002, ApJ, 569, 531 CrossRef
Mennella, V., 2011, this volume
Montillaud, J., Joblin, C., Toublanc, D., et al., 2011, this volume
Perdew, J.P., Chevary, J.A., Vosko, S.H., et al., 1992, Phys. Rev. B, 46, 6671 CrossRef
Pirronello, V., Biham, O., Liu, C., Shen, L.O., & Vidali, G., 1997a, ApJ, 483, L131 CrossRef
Pirronello, V., Liu, C., Roser, J.E., & Vidali, G., 1999, A&A, 344, 681
Pirronello, V., Liu, C., Shen, L., & Vidali, G., 1997b, ApJ, 475, L69 CrossRef
Rauls, E., & Hornekær, L., 2008, ApJ, 679, 531 CrossRef
Rodriguez, L.S., Ruette, F., Sanchez, M., & Mendoza, C., 2010, J. Mol. Catal. A, 316, 16 CrossRef
Roser, J.E., Manico, G., Pirronello, V., & Vidali, G., 2002, ApJ, 581, 276 CrossRef
Sha, X.W., & Jackson, B., 2002, Surf. Sci., 496, 318 CrossRef
Stein, S.E., & Brown, R.L., 1991, J. Am. Chem. Soc., 113, 787 CrossRef
Tschersich, K.G., & von Bonin, V., 1998, J. Appl. Phys., 84, 4065 CrossRef
Zecho, T., Güttler, A., Sha, X., Jackson, B., & Küppers, J., 2002, J. Chem. Phys., 117, 8486 CrossRef