Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-23T12:53:50.322Z Has data issue: false hasContentIssue false

On a Szegö type limit theorem, the Hölder-Young-Brascamp-Liebinequality, and the asymptotic theory ofintegrals and quadratic forms of stationary fields *

Published online by Cambridge University Press:  29 July 2010

Florin Avram
Affiliation:
Dépt de Mathématiques, Université de Pau, Pau, France
Nikolai Leonenko
Affiliation:
Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
Ludmila Sakhno
Affiliation:
Dept. of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Ukraine, and Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
Get access

Abstract

Many statistical applications require establishing central limit theorems for sums/integrals $S_T(h)=\int_{t \in I_T} h (X_t) {\rm d}t$ or for quadratic forms $Q_T(h)=\int_{t,s \in I_T} \hat{b}(t-s) h (X_t, X_s) {\rm d}s {\rm d}t$, where Xt is a stationary process. A particularly important case is that of Appell polynomials h(Xt) = Pm(Xt), h(Xt,Xs) = Pm,n (Xt,Xs), since the “Appell expansion rank" determines typically the type of central limit theorem satisfied by the functionals ST(h), QT(h). We review and extend here to multidimensional indices, along lines conjectured in [F. Avram and M.S. Taqqu, Lect. Notes Statist.187 (2006) 259–286], a functional analysis approach to this problem proposed by [Avram and Brown, Proc. Amer. Math. Soc.107 (1989) 687–695] based on the method of cumulants and on integrability assumptions in the spectral domain; several applications are presented as well.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, B., Ash, J.M., Jones, R., Rider, D.G. and Saffari, B., Exponential sums with coefficients 0 or 1 and concentrated Lp norms. Ann. Inst. Fourier 57 (2007) 13771404. CrossRef
Anh, V.V. and Leonenko, N.N., Spectral analysis of fractional kinetic equations with random data. J. Statist. Phys. 104 (2001) 13491387. CrossRef
Anh, V.V. and Leonenko, N.N., Renormalization and homogenization of fractional diffusion equations with random data. Probab. Theory Relat. Fields 124 (2002) 381408. CrossRef
Anh, V.V., Angulo, J.M. and Ruiz-Medina, M.D., Possible long-range dependence in fractional random fields. J. Statist. Plann. Infer. 80 (1999) 95110. CrossRef
Anh, V.V., Heyde, C.C. and Leonenko, N.N., Dynamic models of long-memory processes driven by Lévy noise. J. Appl. Probab. 39 (2002) 730747. CrossRef
Anh, V.V., Leonenko, N.N. and McVinish, R., Models for fractional Riesz-Bessel motion and related processes. Fractals 9 (2001) 329346. CrossRef
Anh, V.V., Leonenko, N.N. and Sakhno, L.M., Higher-order spectral densities of fractional random fields. J. Stat. Phys. 111 (2003) 789814. CrossRef
Anh, V.V., Leonenko, N.N. and Sakhno, L.M., Quasi-likelihood-based higher-order spectral estimation of random fields with possible long-range dependence. Stochastic Methods and their Applications. J. Appl. Probab. A 41 (2004) 3553. CrossRef
Anh, V.V., Leonenko, N.N. and Sakhno, L.M., On a class of minimum contrast estimators. J. Statist. Plann. Infer. 123 (2004) 161185. CrossRef
Avram, F., Bilinear Forms, On in Gaussian Random Variables and Toeplitz Matrices. Probab. Theory Relat. Fields 79 (1988) 3745. CrossRef
Avram, F., Generalized Szegö Theorems and asymptotics of cumulants by graphical methods. Trans. Amer. Math. Soc. 330 (1992) 637649.
Avram, F. and Brown, L., Generalized Hölder Inequality, A and a Generalized Szegö Theorem. Proc. Amer. Math. Soc. 107 (1989) 687695.
Avram, F. and Fox, R., Central limit theorems for sums of Wick products of stationary sequences. Trans. Amer. Math. Soc. 330 (1992) 651663. CrossRef
Avram, F. and Taqqu, M.S., Noncentral limit theorems and Appell polynomials. Ann. Probab. 15 (1987) 767775. CrossRef
Avram, F. and Taqqu, M.S., Hölder's Inequality for Functions of Linearly Dependent Arguments. SIAM J. Math. Anal. 20 (1989) 14841489. CrossRef
F. Avram and M.S. Taqqu, On a Szegö type limit theorem and the asymptotic theory of random sums, integrals and quadratic forms. Dependence in probability and statistics, Lect. Notes Statist. 187. Springer, New York (2006) 259–286.
Ball, K., Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991) 351359. CrossRef
Barthe, F., On a reverse form of the Brascamp-Lieb inequality. Inventiones Mathematicae 134 (2005) 335361. CrossRef
J. Bennett, A. Carbery, M. Christ and T. Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008) 1343–1415. CrossRef
Bentkus, R., On the error of the estimate of the spectral function of a stationary process. Lietuvos Matematikos Rinkinys 12 (1972) 5571 (In Russian).
Bentkus, R., and Rutkauskas, R., On the asymptotics of the first two moments of second order spectral estimators. Liet. Mat. Rink. 13 (1973) 2945.
J. Beran, Statistics for Long-Memory Processes. Chapman & Hall, New York (1994).
Brascamp, H.J. and Lieb, E., Best constants in Young's inequality, its converse, and its generalization to more than three functions. Adv. Math. 20 (1976) 151173. CrossRef
Breuer, P. and Major, P., Central limit theorems for nonlinear functionals of Gaussian fields. J. Multiv. Anal. 13 (1983) 425441. CrossRef
Brockwell, P.J., Representations of continuous-time ARMA processes. Stochastic Methods and their Applications. J. Appl. Probab. A 41 (2004) 375382. CrossRef
Carlen, E.A., Lieb, E.H. and Loss, M., A sharp analog of Young's inequality on Sn and related entropy inequalities. J. Geom. Anal. 14 (2004) 487520. CrossRef
Dobrushin, R.L. and Major, P., Non-central limit theorems for non-linear functions of Gaussian fields. Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979) 2752. CrossRef
Fox, R. and Taqqu, M.S., Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517532. CrossRef
Fox, R. and Taqqu, M.S., Central limit theorems for quadratic forms in random variables having long-range dependence. Probab. Theory Relat. Fields 74 (1987) 213240. CrossRef
Friedgut, E., Hypergraphs, entropy, and inequalities. Amer. Math. Monthly 111 (2004) 749760. CrossRef
Gao, J., Anh, V.V. and Heyde, C.C., Statistical estimation of nonstationary Gaussian process with long-range dependence and intermittency. Stoch. Process. Appl. 99 (2002) 295321. CrossRef
Gay, R. and Heyde, C.C., On a class of random field models which allows long range dependence. Biometrika 77 (1990) 401403. CrossRef
Ginovian, M.S., Toeplitz, On type quadratic functionals of stationary Gaussian processes. Probab. Theory Relat. Fields 100 (1994) 395406. CrossRef
Ginovian, M.S. and Sahakyan, A.A., Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes. Probab. Theory Relat. Fields 138 (2007) 551579. CrossRef
Giraitis, L., Central limit theorem for functionals of linear processes. Lithuanian Math. J. 25 (1985) 4357. CrossRef
L. Giraitis and D. Surgailis, Multivariate Appell polynomials and the central limit theorem, in Dependence in Probability and Statistics. Edited by E. Eberlein and M.S. Taqqu. Birkhäuser, New York (1986) 21–71.
Giraitis, L. and Surgailis, D., A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle estimate. Probab. Theory Relat. Fields 86 (1990) 87-104. CrossRef
Giraitis, L. and Taqqu, M.S., Limit theorems for bivariate Appell polynomials, Part 1: Central limit theorems. Probab. Theory Relat. Fields 107 (1997) 359381. CrossRef
Giraitis, L. and Taqqu, M.S., Whittle estimator for finite variance non-Gaussian time series with long memory. Ann. Statist. 27 (1999) 178203.
Granger, C.W. and Joyeux, R., An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 10 (1990) 233– 257.
V. Grenander and G. Szegö, Toeplitz forms and their applications. University of California Press, Berkeley (1958).
C.C. Heyde, Quasi-Likelihood And Its Applications: A General Approach to Optimal Parameter Estimation. Springer-Verlag, New York (1997).
Heyde, C. and On, R. Gay asymptotic quasi-likelihood. Stoch. Process. Appl. 31 (1989) 223236. CrossRef
Heyde, C. and Smoothed, R. Gay periodogram asymptotics and estimation for processes and fields with possible long-range dependence. Stoch.c Process. Appl. 45 (1993) 169182. CrossRef
Hosking, J.R.M., Fractional differencing. Biometrika 68 (1981) 165176. CrossRef
Hurst, H.E., Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng. 116 (1951) 770808.
Ibragimov, I.A., On estimation of the spectral function of a stationary Gaussian process. Theory Probab. Appl. 8 (1963) 391-430.
Ibragimov, I.A., On maximum likelihood estimation of parameters of the spectral density of stationary time series. Theory Probab. Appl. 12 (1967) 115119. CrossRef
A.V. Ivanov and N.N. Leonenko, Statistical Analysis of Random Processes. Kluwer Academic Publisher, Dordrecht (1989).
Kelbert, M., Leonenko, N.N. and Ruiz-Medina, M.D., Fractional random fields associated with stochastic fractional heat equation. Adv. Appl. Probab. 37 (2005) 108133. CrossRef
S. Kwapien and W.A. Woyczynski, Random Series and Stochastic Integrals: Single and Multiple. Birkhaäser, Boston (1992).
Leonenko, N.N. and Sakhno, L.M., On the Whittle estimators for some classes of continuous parameter random processes and fields. Stat. Probab. Lett. 76 (2006) 781795. CrossRef
Lieb, E.H., Gaussian kernels have only Gaussian maximizers. Invent. Math. 102 (1990) 179208. CrossRef
Malyshev, V.A., Cluster expansions in lattice models of statistical physics and the quantum theory of fields. Russ. Math. Surveys 35 (1980) 162. CrossRef
Niven, I., Formal power series. Amer. Math. Monthly 76 (1969) 871889. CrossRef
Nualart, D. and Peccati, G., Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005) 177193. CrossRef
J.G. Oxley, Matroid Theory. Oxford University Press, New York (1992).
G. Peccati and C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII. Lect. Notes Math. 1857 247–262. Springer-Verlag, Berlin (2004).
H. Reiter and J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, USA (2000).
W. Rudin, Real and Comlex Analysis. McGraw-Hill, London, New York (1970).
W. Rudin, Functional Analysis. McGraw-Hill, London, New York (1991).
G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall, New York (1994).
V. Solev and L. Gerville-Reache, A sufficient condition for asymptotic normality of the normalized quadratic form Ψ n (f,g). C. R. Acad. Sci. Paris, Ser. I 342 (2006) 971–975.
R. Stanley, Enumerative combinatorics. Cambridge University Press (1997).
E.M. Stein, Singular Integrals and Differential Properties of Functions. Princeton University Press (1970).
B. Sturmfels, Grobner bases and convex polytopes. Volume 8 of University lecture Series. AMS, Providence, RI (1996).
Surgailis, D., Poisson, On multiple stochastic integral and associated Markov semigroups. Probab. Math. Statist. 3 (1984) 217239.
D. Surgailis, Long-range dependence and Appel rank, Ann. Probab. 28 (2000) 478–497. CrossRef
Taqqu, M.S., Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979) 5383. CrossRef
Tutte, W.T., Matroids and graphs. Trans. Amer. Math. Soc. 90 (1959) 527552. CrossRef
D. Welsh, Matroid Theory. Academic Press, London (1976).
Willinger, W., Taqqu, M.S. and Teverovsky, V., Stock market prices and long-range dependence. Finance and Stochastics 3 (1999) 113. CrossRef
P. Whittle, Hypothesis Testing in Time Series. Hafner, New York (1951).
Whittle, P., Estimation and information in stationary time series. Ark. Mat. 2 (1953) 423434. CrossRef
A. Zygmund, Trigonometric Series. Volumes I and II. Third edition. Cambridge University Press (2002).