Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T07:01:13.716Z Has data issue: false hasContentIssue false

Almost sure properties of controlled diffusionsand worst case properties of deterministic systems

Published online by Cambridge University Press:  20 March 2008

Martino Bardi
Affiliation:
Dipartimento di Matematica P. e A., Università di Padova, via Trieste 63, 35131 Padova, Italy; [email protected]; [email protected]
Annalisa Cesaroni
Affiliation:
Dipartimento di Matematica P. e A., Università di Padova, via Trieste 63, 35131 Padova, Italy; [email protected]; [email protected]
Get access

Abstract

We compare a general controlled diffusion process with a deterministic systemwhere a second controller drives the disturbance against the firstcontroller. We show that the two models are equivalent withrespect to two properties: the viability (or controlledinvariance, or weak invariance) of closed smooth sets, and theexistence of a smooth control Lyapunov function ensuring thestabilizability of the system at an equilibrium.


Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Aida, S. Kusuoka and D. Stroock, On the support of Wiener functionals, Asymptotic problems in probability theory: Wiener functionals and asymptotics (Sanda/Kyoto, 1990), Pitman Res. Notes Math. Ser 284, Longman Sci. Tech., Harlow (1993) 3–34.
Aubin, J.-P. and Da Prato, G., The viability theorem for stochastic differential inclusions. Stochastic Anal. Appl 16 (1998) 115. CrossRef
Aubin, J.-P. and Doss, H., Characterization of stochastic viability of any nonsmooth set involving its generalized contingent curvature. Stochastic Anal. Appl 21 (2003) 955981. CrossRef
M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkäuser, Boston (1997).
Bardi, M. and Cesaroni, A., Almost sure stabilizability of controlled degenerate diffusions. SIAM J. Control Optim 44 (2005) 7598. CrossRef
Bardi, M. and Da Lio, F., Propagation of maxima and strong maximum principle for viscosity solution of degenerate elliptic equations. I: Convex operators. Nonlinear Anal 44 (2001) 9911006. CrossRef
Bardi, M. and Da Lio, F., Propagation of maxima and strong maximum principle for fully nonlinear degenerate elliptic equations. II: Concave operators. Indiana Univ. Math. J 52 (2003) 607627. CrossRef
M. Bardi and P. Goatin, Invariant sets for controlled degenerate diffusions: a viscosity solutions approach, in Stochastic Analysis, Control, Optimization and Applications: A Volume in Honor of W.H. Fleming, W.M. McEneaney, G.G. Yin and Q. Zhang Eds., Birkhäuser, Boston (1999) 191–208.
Bardi, M. and Jensen, R., A geometric characterization of viable sets for controlled degenerate diffusions. Set-Valued Anal 10 (2002) 129141. CrossRef
T. Başar and P. Bernhard, H-optimal control and related minimax design problems. A dynamic game approach, 2nd edn., Birkhäuser, Boston (1995).
Ben Arous, G., Grădinaru, M. and Ledoux, M., Hölder norms and the support theorem for diffusions. Ann. Inst. H. Poincaré Probab. Statist 30 (1994) 415436.
P. Bernhard, Robust control approach to option pricing, including transaction costs, in Advances in dynamic games, Ann. Internat. Soc. Dynam. Games 7, Birkhäuser, Boston (2005) 391–416.
Buckdahn, R., Peng, S., Quincampoix, M. and Rainer, C., Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris Sér. I Math 327 (1998) 1722. CrossRef
Cardaliaguet, P., A differential game with two players and one target. SIAM J. Control Optim 34 (1996) 14411460. CrossRef
A. Cesaroni, Stability properties of controlled diffusion processes via viscosity methods. Ph.D. thesis, University of Padova (2004).
Cesaroni, A., A converse Lyapunov theorem for almost sure stabilizability. Systems Control Lett 55 (2006) 992998. CrossRef
Crandall, M.C., Ishii, H. and Lions, P.L., User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc 27 (1992) 167. CrossRef
Da Prato, G. and Frankowska, H., Invariance of stochastic control systems with deterministic arguments. J. Diff. Equ 200 (2004) 1852. CrossRef
Doss, H., Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Sect. B (N.S.) 13 (1977) 99125.
W.H. Fleming and H.M. Soner, Controlled Markov Process and Viscosity Solutions. Springer-Verlag, New York (1993).
R.A. Freeman and P.V. Kokotovic: Robust nonlinear control design. State-space and Lyapunov techniques. Birkäuser, Boston (1996).
Haussmann, U.G. and Lepeltier, J.P., On the existence of optimal controls. SIAM J. Control Optim 28 (1990) 851902. CrossRef
Lin, Y., Sontag, E.D., Control-Lyapunov universal formulas for restricted inputs. Control Theory Adv. Tech 10 (1995) 19812004.
A. Millet and M. Sanz-Solé, A simple proof of the support theorem for diffusion processes, Séminaire de Probabilités, XXVIII, Lect. Notes Math 1583, Springer, Berlin (1994) 36–48.
Olsder, G.J., Differential game-theoretic thoughts on option pricing and transaction costs. Int. Game Theory Rev 2 (2000) 209228.
Soner, H.M. and Touzi, N., Dynamic programming for stochastic target problems and geometric flow. J. Eur. Math. Soc 4 (2002) 201236. CrossRef
Soner, H.M. and Touzi, N., A stochastic representation for the level set equations. Comm. Part. Diff. Equ 27 (2002) 20312053. CrossRef
Soravia, P., Pursuit-evasion problems and viscosity solutions of Isaacs equations. SIAM J. Control. Optim 31 (1993) 604623. CrossRef
Soravia, P., Stability of dynamical systems with competitive controls: the degenerate case. J. Math. Anal. Appl 191 (1995) 428449. CrossRef
Soravia, P., $\mathcal{H}_\infty$ control of nonlinear systems: differential games and viscosity solutions. SIAM J. Control Optim 34 (1996) 10711097. CrossRef
Soravia, P., Equivalence between nonlinear $\mathcal{H}_\infty$ control problems and existence of viscosity solutions of Hamilton-Jacobi-Isaacs equations. Appl. Math. Optim 39 (1999) 1732. CrossRef
D.W. Stroock and S.R.S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, Univ. California Press, Berkeley (1972) 333–359.
Stroock, D.W. and Varadhan, S.R.S., On degenerate elliptic-parabolic operators of second order and their associated diffusions. Comm. Pure Appl. Math 25 (1972) 651713. CrossRef
Sussmann, H.J., On the gap between deterministic and stochastic ordinary differential equations. Ann. Probability 6 (1978) 1941. CrossRef