Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T19:57:28.767Z Has data issue: false hasContentIssue false

Synthesis of a Mg2+-Al3+-SO42−-Hydrotalcite-Type Compound from the acid Wastewaters of the Aluminum-Anodizing Industry

Published online by Cambridge University Press:  01 January 2024

E. Álvarez-Ayuso*
Affiliation:
Department of Chemical Technology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2638 BL Delft, The Netherlands
H. W. Nugteren
Affiliation:
Department of Chemical Technology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2638 BL Delft, The Netherlands
*
*E-mail address of corresponding author: [email protected]

Abstract

The synthesis of a Mg2+-Al3+-SO2−4-hydrotalcite-type compound from the acid wastewaters of the aluminum-anodizing industry has been studied as a possible means of recovering the unused Al resource materials as a useful mineral. The synthesis has been carried out from wastewaters of different concentrations (from 6.7 g Al/L to 134 mg Al/L) using the method of precipitation at constant pH, proving that all of them are suitable for such a process. The mineral was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential thermal analysis and chemical analysis, all of which indicated characteristics typical of the desired compound. Almost 100% of the Al initially present in the wastewater solutions is recovered in the form of the Mg2+-Al3+-SO42−-hydrotalcite-type compound.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R., (1968) The crystal structure of pyroaurite Acta Crystallographies B24 972977 10.1107/S0567740868003511.CrossRefGoogle Scholar
Allmann, R., (1970) Doppelscichtchtstrukturen mit brucitahnlichen schichtionen [Me(II)1-xMe(III)x(OH)2]x+ Chimia 24 99108.Google Scholar
BAT Reference Document, Surface treatment of metals anaplastic materials using electrolytic or chemical process (2002).Google Scholar
Bish, D.L., (1980) Anion-exchange in takovite: applications to other hydroxide minerals Bulletin de Mineralogie 103 170175.CrossRefGoogle Scholar
Brindley, G.W. and Kikkawa, S., (1980) Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite Clays and Clay Minerals 28 8791 10.1346/CCMN.1980.0280202.CrossRefGoogle Scholar
Cavani, F. Trifirò, F. and Vaccari, A., (1991) Hydrotalcite-type anionic clays: Preparation, properties and applications Catalysis Today 11 173301 10.1016/0920-5861(91)80068-K.Google Scholar
Chia, P.S.K. Lindoy, L.F. and Livingstone, S.E., (1968) Metal chelates of α-diimines containing a benzothiazole moiety. III. Infrared, thermogravimetric, and magnetic investigations of some sulphate complexes Inorganica Chimica Acta 2 454458 10.1016/S0020-1693(00)87084-X.Google Scholar
Courty, P.h. Durand, D. Freund, E. and Sugier, A., (1982) C1- C6 alcohols from synthesis gas on copper-cobalt catalysts Journal of Molecular Catalysis 17 241254 10.1016/0304-5102(82)85035-9.Google Scholar
de Roy, A., Forano, C., El Malki, K. and Besse, J.P. (1992) Synthesis of microporous materials. Pp. 108169 in: Expanded Clays and other Microporous Systems (Occelli, M.L. and Robson, H.E., editors). Van Nostrand Reinhold, New York.Google Scholar
Dufour, J. La Iglesia, A. Gonzalez, V. and Ruiz-Sierra, J.C., (1997) Viability of the use of pickling baths from aluminium surface treatment for synthesizing low Si/Al zeolites Journal of Environmental Science and Health - Part A -Toxic Hazardous Substances 32 18071825.Google Scholar
Dufour, J. Gonzalez, V. and La Iglesia, A., (2001) Optimization of 4A zeolite synthesis as recovery of wastes from aluminum finishing Journal of Environmental Science and Health - Part A - Toxic Hazardous Substances 36 12571269 10.1081/ESE-100104876.CrossRefGoogle ScholarPubMed
Dufour, J. Gonzalez, V. and La Iglesia, A., (2001) Synthesis of 13X zeolite from alkaline waste streams in the aluminum anodizing industry Industrial and Engineering Chemistry Research 40 11401145 10.1021/ie990808w.CrossRefGoogle Scholar
Dumitriu, E. Hulea, V. Chelaru, C. Catrinescu, C. Tichit, D. and Durand, R., (1999) Influence of the acid-base properties of solid catalysts derived from hydrotalcite-like compounds on the condensation of formaldehyde and acetaldehyde Applied Catalysis A: General 178 145157 10.1016/S0926-860X(98)00282-8.Google Scholar
Eskenazi, R. Raskovan, J. and Levitus, R., (1966) Sulphate complexes of palladium (II) Journal of Inorganic and Nuclear Chemistry 28 521526 10.1016/0022-1902(66)80333-0.CrossRefGoogle Scholar
Hernández, M.J. Ulibarri, M.A. Rendón, J.L. and Serna, C.J., (1984) Thermal stability of Ni, Al double hydroxides with various interlayer anions Thermochimica Acta 81 311318 10.1016/0040-6031(84)85136-9.Google Scholar
Huheey, J.E., (1978) Inorganic Chemistry: Principles of Structure and Reactivity New York Harper & Row Publishers Inc..Google Scholar
Kovanda, F. Kolousek, D. Kalouskova, R. and Vymazal, Z., (2001) Starting production of synthetic hydrotalcite in the Czech Republic Chemicke Listy 95 493497.Google Scholar
La Iglesia, A. Gonzalez, M.V. and Dufour, J., (2002) Zeolite synthesis employing alkaline waste effluents from the aluminum industry Environmental Progress 21 105110 10.1002/ep.670210212.CrossRefGoogle Scholar
Marino, O. and Mascolo, G., (1982) Thermal stability of Mg, Al double hydroxides modified by anionic exchange Thermochimica Acta 55 377383 10.1016/0040-6031(82)85054-5.CrossRefGoogle Scholar
Mascolo, G., (1986) Thermal stability of lithium aluminium hydroxy salts Thermochimica Acta 102 6773 10.1016/0040-6031(86)85314-X.CrossRefGoogle Scholar
Mascolo, G. and Marino, O., (1980) A new synthesis and characterization of magnesium-aluminium hydroxides Mineralogical Magazine 43 619621 10.1180/minmag.1980.043.329.09.CrossRefGoogle Scholar
Mascolo, G. and Marino, O. (1981) Proceedings of the 2nd European Symposium on Thermal Analysis, Aberdeen (Dollimore, D., editor). Heyden, London.Google Scholar
Meyn, M. Beneke, K. and Lagaly, G., (1990) Anion exchange reaction of layered double hydroxides Inorganic Chemistry 29 52015207 10.1021/ic00351a013.Google Scholar
Miyata, S., (1975) The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties — I: The systems Mg2+-Al3+-NO3, Mg2+-Al3+-Cr, Mg2+-Al3+-ClO4, Ni2+-Al3+-Cr and Zn2+-Al3+-Cl Clays and Clay Minerals 23 369375 10.1346/CCMN.1975.0230508.CrossRefGoogle Scholar
Miyata, S., (1980) Physico-chemical properties of synthetic hydrotalcites in relation to composition Clays and Clay Minerals 28 5056 10.1346/CCMN.1980.0280107.Google Scholar
Miyata, S., (1983) Anion exchange properties of hydrotalcite-like compounds Clays and Clay Minerals 31 305311 10.1346/CCMN.1983.0310409.CrossRefGoogle Scholar
Miyata, S. and Okada, A., (1977) Synthesis of hydrotalcite-like compounds and their physico-chemical properties — the systems Mg2+-Al3+-SO42− and Mg2+-Al3+-CrO42− Clays and Clay Minerals 25 1418 10.1346/CCMN.1977.0250103.Google Scholar
Moreno, N. Querol, X. Plana, F. Andres, J.M. Janssen, M. and Nugteren, H., (2002) Pure zeolite synthesis from silica extracted from coal fly ashes Journal of Chemical Technology and Biotechnology 11 274279 10.1002/jctb.578.Google Scholar
Morigi, M. Scavetta, E. Berrettoni, M. Giorgetti, M. and Tonelli, D., (2001) Sulfate-selective electrodes based on hydrotalcites Analytica Chimica Acta 439 265272 10.1016/S0003-2670(01)01047-9.Google Scholar
Nakamoto, K., (1970) Infrared Spectra of Inorganic and Coordination Compounds New York Wiley.Google Scholar
Nakamoto, K. Fujita, J. Tanaka, S. and Kobayashi, M., (1957) Infrared spectra of metallic complexes. IV. Comparison of the infrared spectra of unidentate and bidentate metallic complexes Journal of the American Chemical Society 19 49044908 10.1021/ja01575a020.Google Scholar
Reichle, W.T., (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite) Solid State Ionics 22 135141 10.1016/0167-2738(86)90067-6.Google Scholar
Ross, G.J. and Kodama, H., (1967) Properties of a synthetic magnesium-aluminum carbonate hydroxide and its relationship to magnesium-aluminum double hydroxide, manasseite and hydrotalcite American Mineralogist 52 10361047.Google Scholar
Sema, C.J. White, J.L. and Hem, S.L., (1977) Anion aluminium hydroxide gel interactions Soil Science Society of America Proceedings 41 10091013 10.2136/sssaj1977.03615995004100050041x.Google Scholar
Suzuki, E. and Ono, Y., (1988) Aldol condensation reaction between formaldehyde and acetone over heat-treated synthetic hydrotalcite and hydrotalcite-like compounds Bulletin of the Chemical Society of Japan 61 10081010 10.1246/bcsj.61.1008.Google Scholar
Taylor, H.F.W., (1969) Segregation and cation-ordering in sjoegrenite and pyroaurite Mineralogical Magazine 37 338342 10.1180/minmag.1969.037.287.04.Google Scholar
Taylor, H.F.W., (1973) Crystal structures of some double hydroxide minerals Mineralogical Magazine 39 377389 10.1180/minmag.1973.039.304.01.Google Scholar
Trifirò, F. Vaccari, A. and Clause, O., (1994) Nature and properties of nickel-containing mixed oxides obtained from hydrotalcite-type anionic clays Catalysis Today 21 185195 10.1016/0920-5861(94)80043-X.Google Scholar
Vaccari, A., (1998) Preparation and catalytic properties of cationic and anionic clays Catalysis Today 41 5371 10.1016/S0920-5861(98)00038-8.Google Scholar
Vaccari, A., (1999) Clays and catalysis: a promising future Applied Clay Science 14 161198 10.1016/S0169-1317(98)00058-1.Google Scholar