Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T13:14:07.718Z Has data issue: false hasContentIssue false

Polytype and morphological analyses of gümbelite, a fibrous Mg-rich illite

Published online by Cambridge University Press:  01 January 2024

Jun Kameda*
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
Ritsuro Miyawaki
Affiliation:
Department of Geology, The National Science Museum, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
Victor A. Drits
Affiliation:
Geological Institute, Russian Academy of Science, Pyzhevsky per. D7, 1109017 Moscow, Russia
Toshihiro Kogure
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
*
*E-mail address of corresponding author: [email protected]

Abstract

Polytypism in gümbelite and its relationship to the fibrous or ribbon-like morphology exhibited by this Mg-rich illite were investigated by powder X-ray diffraction (XRD), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Comparison between the XRD pattern from oriented fibers using a conventional powder diffractometer and a randomly oriented pattern using a Gandolfi camera suggested that 2M2 is dominant but other polytypes belonging to subfamily A also exist, and that the fiber axis of gümbelite is parallel to <110> in 2M2, <110> in 2M1, and <100> in 1M. The EBSD analyses confirmed these crystallographic directions directly from individual crystals. Electron diffraction and high-resolution TEM showed that twinning and intergrowths of various polytypes including both subfamilies are common in a single crystal and that the two types of rotations [2n60° and (2n+1)60°] between adjacent layers are often randomly mixed at the monolayer level. The data suggest that high densities of twinning and intergrowths account for the origin of the fibrous morphology along <110> for 2M1 and 2M2 polytypes. Volume restriction in a confined vein space may also play a role.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R.N. Jr. and Burnham, C.W., (1988) Polytypism in micas: A polyhedral approach to energy calculations American Mineralogist 73 105118.Google Scholar
Aruja, E., (1944) An X-ray study on the crystal-structure of gümbelite Mineralogical Magazine 27 1116 10.1180/minmag.1944.027.184.03.CrossRefGoogle Scholar
Bailey, S.W., (1984) Crystal chemistry of the true micas Micas 13 1360 10.1515/9781501508820-006.CrossRefGoogle Scholar
Bailey, S.W., (1988) X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite Clays and Clay Minerals 36 193213 10.1346/CCMN.1988.0360301.CrossRefGoogle Scholar
Baronnet, A. and Buseck, R.P., (1992) Polytypism and stacking disorder Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy Washington, D.C. Mineralogical Society of America 231288 10.1515/9781501509735-011.CrossRefGoogle Scholar
Bauer, A. Velde, B. and Gaupp, R., (2000) Experimental constraints on illite crystal morphology Clay Minerals 35 587597 10.1180/000985500546909.CrossRefGoogle Scholar
Brigatti, M.F. Frigieri, P. and Poppi, L., (1998) Crystal chemistry of Mg-, Fe-bearing muscovites-2M 1 American Mineralogist 83 775785 10.2138/am-1998-7-809.CrossRefGoogle Scholar
Brigatti, M.F. Caprilli, E. Malferrari, D. Medici, L. and Poppi, L., (2005) Crystal structure and chemistry of trilithionite-2M 2 and polylithionite-2M 2 European Journal of Mineralogy 17 475481 10.1127/0935-1221/2005/0017-0475.CrossRefGoogle Scholar
Cox, S.F., (1987) Antitaxial crack-seal vein microstructures and their relationship to displacement paths Journal of Structural Geology 7 779787 10.1016/0191-8141(87)90079-4.CrossRefGoogle Scholar
Dana, J.D., (1892) Descriptive Mineralogy 6th New York J. Wiley and Sons.Google Scholar
Drits, V.A. Zvyagin, B.B. and Tokmakov, P.P., (1966) Gumbelite — dioctahedral micas 2M 2 Doklady Academii Nauk SSSR 170 13901394.Google Scholar
Drits, V.A. McCarty, D.K. and Zviagina, B.B., (2006) Crystal-chemical factors responsible for the distribution of octahedral cations over trans- and cis-sites in dioctahedral 2:1 layer silicates Clays and Clay Minerals 54 131152 10.1346/CCMN.2006.0540201.CrossRefGoogle Scholar
Ďurovič, S. and Wilson, A.C.J., (1992) Layer stacking in general polytypic structures International Tables for Crystallography Vol. C Dordrecht, The Netherlands Kluwer Academic Publishers 667680.Google Scholar
Ferraris, G. Gula, A. Ivaldi, G. Nespolo, M. Sokolova, E. Uvarova, Y. and Khomyakov, A.P., (2001) First structure determination of an MDO-2O mica polytype associated with a 1M polytype European Journal of Mineralogy 13 10131023 10.1127/0935-1221/2001/0013-1013.CrossRefGoogle Scholar
Giuseppetti, G. and Tadini, C., (1972) The crystal structure of 2O brittle mica: anandite Tschermasks Mineralosische und Petrographische Mitteilungen 18 169184 10.1007/BF01134206.CrossRefGoogle Scholar
Güven, N., (1971) The crystal structures of 2M 1 phengite and 2M 1 muscovite Zeitschrift für Kristallographie 134 196262.Google Scholar
Güven, N., (2001) Mica structure and fibrous growth of illite Clays and Clay Minerals 49 189196 10.1346/CCMN.2001.0490301.CrossRefGoogle Scholar
Güven, N. Hower, W.F. and Davies, D.K., (1980) Nature of authigenic illites in sandstone reservoirs Journal of Sedimentary Petrology 50 761766.Google Scholar
Güven, N., Lafon, G.M. and Lee, L.J. (1982) Experimental hydrothermal alteration of albite to clays: preliminary results. Proceedings of the International Clay Conference 1981. Elsevier Scientific Publishing Company, pp. 495512.Google Scholar
Inoue, A. Kohyama, N. Kitagawa, R. and Watanabe, T., (1987) Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Kilaas, R., (1998) Optical and near-optical filters in high-resolution electron microscopy Journal of Microscopy 190 4551 10.1046/j.1365-2818.1998.3070861.x.CrossRefGoogle Scholar
Kogure, T., (2002) Investigation of micas using advanced TEM Micas: Crystal Chemistry & Metamorphic Petrology 46 281312 10.1515/9781501509070-010.CrossRefGoogle Scholar
Kogure, T., (2002) Identification of polytypic groups in hydrous phyllosilicates using Electron Back-Scattering Patterns (EBSPs) American Mineralogist 87 16781685 10.2138/am-2002-11-1217.CrossRefGoogle Scholar
Kogure, T., (2003) A program to assist Kikuchi pattern analysis Journal of the Crystallographic Society of Japan 45 391395 10.5940/jcrsj.45.391 in Japanese with English abstract, the program was available from.Google Scholar
Kogure, T. and Bunno, M., (2004) Investigation of polytype in lepidolite using electron back-scattered diffraction American Mineralogist 89 16801684 10.2138/am-2004-11-1213.CrossRefGoogle Scholar
Kogure, T. and Nespolo, M., (1999) First occurrence of a stacking sequence including (±60°, ±180°) rotations in Mg-rich annite Clays and Clay Minerals 47 784792 10.1346/CCMN.1999.0470614.CrossRefGoogle Scholar
Kogure, T. Inoue, A. and Beaufort, D., (2005) Polytype and morphology analysis of kaolin minerals by Electron Back-Scattered Diffraction Clays and Clay Minerals 53 199208 10.1346/CCMN.2005.0530301.CrossRefGoogle Scholar
Kuwahara, Y. Uehara, S. and Aoki, Y., (2001) Atomic force microscopy study of hydrothermal illite in Izumiyama pottery stone from Arita, Saga Prefecture, Japan Clays and Clay Minerals 49 300309 10.1346/CCMN.2001.0490404.CrossRefGoogle Scholar
Lanson, B. and Champion, D., (1991) The I/S to illite reaction in the late stage diagenesis American Journal of Science 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Lanson, B. Beaufort, D. Berger, G. Baradat, J. and Lacharpagne, J.C., (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late-stage diagenesis of the lower Permian Rotlingend Sandstone reservoir, offshore of the Netherlands Journal of Sedimentary Research 66 501518.Google Scholar
Lee, J.H. and Guggenheim, S., (1981) Single crystal X-ray refinement of pyrophyllite-1Tc American Mineralogist 66 350367.Google Scholar
Levinson, A.A., (1953) Studies in the mica groups; relationship between polymorphism and composition in the muscovitelepidolite series American Mineralogist 38 88107.Google Scholar
Mookherjee, M. Redfern, S.A.T. and Zhang, M., (2001) Thermal response of structure and hydneutron diffraction and FTIR study European Journal of Mineralogy 13 545555 10.1127/0935-1221/2001/0013-0545.CrossRefGoogle Scholar
Munoz, J.L., (1968) Physical properties of synthetic lepidolites American Mineralogist 53 14901512.Google Scholar
Nakamuta, Y., (1999) Precise analysis of a very small mineral by an X-ray diffraction method Journal of Mineralogical Society of Japan 28 117121 10.2465/gkk1952.28.117 (in Japanese with English abstract).Google Scholar
Nespolo, M. Ďurovič, S., Mottana, A. Sassi, F.P. Tompson, J.B. Jr. and Guggenheim, S., (2002) Crystallographic basis of polytypism and twinning in micas Micas: Crystal Chemistry & Metamorphic Petrology Washington D.C. Mineralogical Society of America 155279 10.1515/9781501509070-009.CrossRefGoogle Scholar
Ni, Y. and Hughes, J.M., (1996) The crystal structure of nanpingite 2M 2, the Cs end-member of muscovite American Mineralogist 81 105110 10.2138/am-1996-1-213.CrossRefGoogle Scholar
Peacor, D.R. Bauluz, B. Dong, H. Tillick, D. and Yan, Y., (2002) Transmission and analytical electron microscopy evidence for high Mg contents of 1M illite: Absence of 1M polytypism in normal prograde diagenetic sequences of politic rocks Clays and Clay Minerals 50 757765 10.1346/000986002762090281.CrossRefGoogle Scholar
Radoslovich, E.W., (1958) Structural control of polymorphism in micas Nature 183 253 10.1038/183253a0.CrossRefGoogle Scholar
Radoslovich, E.W., (1960) Hydromuscovite with the 2M 2 structure-A criticism American Mineralogist 45 894898.Google Scholar
Ramsdell, L.S., (1947) Studies on silicon carbide American Mineralogist 32 6482.Google Scholar
Riedel, M. Cavazzini, G. D’yakonov, Y.u.S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval, P.V. Muller, G. Neiva, A.M.R. Radoslovich, E.W. Robert, J.L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., (1999) Nomenclature of the micas Mineralogical Magazine 63 267279 10.1180/minmag.1999.063.2.13.Google Scholar
Shimoda, S., (1970) A hydromuscovite from the Shakanai Mine, Akita Prefecture, Japan Clays and Clay Minerals 18 269274 10.1346/CCMN.1970.0180505.CrossRefGoogle Scholar
Sidorenko, O.V. Zvyagin, B.B. and Soboleva, S.V., (1975) Refinement of crystal-structure of dioctahedral mica 1M Kristallografiya 20 543.Google Scholar
Slominskaya, M. Drits, V.A. Finco, V. and Salyn, A., (1978) The nature of interlayer water in fine-dispersed muscovite Preamurie in Izvestiya Akademii Nauk SSSR, seriya geol. 10 95104.Google Scholar
Small, J.S. Hamilton, D.L. and Habesch, S., (1992) Experimental simulation of clay precipitation within reservoir sandstones. 2. Mechanism of illite formation and controls on morphology Journal of Sedimentary Petrology 62 520529 10.2110/jsr.62.520.CrossRefGoogle Scholar
Takeda, H. Haga, N. and Sadanaga, R., (1971) Structural investigation of polymorphic transition between 2M 2-, 1M-lepidolite and 2M 1 muscovite Mineralogical Journal 6 203215 10.2465/minerj1953.6.203.CrossRefGoogle Scholar
Threadgold, I.M., (1959) A hydromuscovite with the 2M 2 structure, from Mount Lyell, Tasmania American Mineralogist 44 488494.Google Scholar
Timofeev, V.M., (1937) The northern excursion, The Karelian ASSR XVII International Geological Congress Guide-book Moscow Leningrad 55.Google Scholar
Tokumakov, P.P. Zamurueva, M.G. and Petrov, V.P., (1961) On the nature of gumbelite Trudy Instituta geologii rudnykh mestorozhdeniy, petrografii, mineralogii i geokhimii Akademii Nauk SSSR 48 8093.Google Scholar
Wilson, M.D. and Pittmann, E.D., (1977) Authigenic clays in sandstones: Recognition and influence on reservoir properties and paleoenvironmental analysis Journal of Sedimentary Petrology 47 331.Google Scholar
Zhoukhlistov, A.P. Zvyagin, B.B. Soboleva, S.V. and Fedotov, A.F., (1973) The crystal structure of the dioctahedral mica 2M 2 determined by high voltage electron diffraction Clays and Clay Minerals 21 465470 10.1346/CCMN.1973.0210606.CrossRefGoogle Scholar