Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T15:03:27.487Z Has data issue: false hasContentIssue false

Kaolinite Intercalation Procedure for all Sizes and Types with X-Ray Diffraction Spacing Distinctive from other Phyllosilicates

Published online by Cambridge University Press:  01 July 2024

M. L. Jackson*
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, WI 53706, U.S.A.
F. H. Abdel-Kader*
Affiliation:
Department of Soil Science, University of Wisconsin, Madison, WI 53706, U.S.A.
*
*(UW-MSN).
Department of Soil and Water Science, Alexandria University, Egypt (on leave as Visiting Research Associate, UW-MSN).

Abstract

Kaolinites of all kinds (fine, ‘fireclay,’ ‘type IV,’ etc.), some of which do not expand or expand incompletely with the usual intercalation methods used for comparison, are expanded completely by treatment of dry (110°C) clay with dry CsCl salt, followed by contact with hydrazine for 1 day at 65°C and then with DMSO overnight at 90°C. Comparison treatments were grinding in KOAc, soaking in hydrazine, and Li-DMSO, as well as combination of these. Following the Cs-hydrazine-DMSO treatment, the 7.2 Å spacing of 1:1 dioctahedral layer silicates shifts to 11.2 Å and the 11.2 Å/(7.2 + 11.2 Å) ratio ≃1.0. The trioctahedral 1:1 layer silicates and chlorite are not expanded by the Cs-hydrazine-DMSO procedure.

Резюме

Резюме

Каолиниты всех типов /мелкозернистый, огнеупорная глина,“тип” и т.д./, некоторые из которых не расширяются или расширяются неполностью при обычных методах интеркалации, использовавшихся для сравнения,были расширены полностью путем обработки сухой /110°C/ глины сухой солью CsCl, после чего следовал контакт с гидрозином в течение 1 дня при 65°C и затем с диметил-сульфоксидом в течение ночи при 90°C. Для сравнения, обработки проводились ацетатом калия, пропиткой гидрозином и Li-диметилсульфоксидом,а также их смесями. После Cs-гидрозин-диметилсульфоксидной обработки промежуток в 7,2Å между силикатными диоктаэдрическими слоями 1:1 расширился до 11,2Å и отношения 11,2Å/ (7,2+11,2Å)=1,0. Силикаты с триоктаэдрическими слоями 1:1 и хлорит не расширились в результате Cs-гидрозин-диметилсульфоксидной обработки.

Kurzreferat

Kurzreferat

Kaoliniten aller Art (fein,feuerfest,Typ IV usw.) von denen ei nige sich nicht oder nur unvollständig, mit den gewöhnlichen, zum Vergleich benutzten Einlagerungsmethoden ausdehnen, wurden vollständig geschwollen, durch Behandlung des trockenen(110°C) Tons mit trocknem CsCl Salz, und nach folgend mit Hydrazin für einen Tag bei 65°C und dann mit DMSO über Nacht bei 90°C. Verglelchsbehandlungen waren: Vermahlen in KOAc, Einweichen in Hydrazin und Li-DMSO, sowohl wie eine Kombination dieser Methoden. Nach der Cs-Hydrazin-DMSO Behandlung, ändert sich der 7,2A Zwischenraum der 1 /1 Diokta hedrischen Schichtsilikate auf 11,2A und das Verhäitnis 11,2A (7,2+11,2A) ≂ 1,0. Die trioktahedrischen 1 / 1 Schichtsilikate und Chlorite schwellen nicht mit der Cs-Hydrazin-DMSO Methode.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Kader, F. H., Jackson, M. L. and Lee, G. B. (1976) Soil kaolinite, vermiculite and chlorite identification by an improved lithium DMSO X-ray diffraction test: Agron. Abstr. p. 194; J. Soil Sci. Soc. Am. (in press, 1977).Google Scholar
Andrew, R. W., Jackson, M. L. and Wada, K. (1960) Intersalation as a technique for differentiation of kaolinite from chloritic minerals by X-ray diffraction: Soil Sci. Soc. Am. Proc. 24, 422424.CrossRefGoogle Scholar
Bailey, S. W. and Langston, R. B. (1969) Anauxite and kaolinite structures identical: Clays & Clay Minerals 17, 241243.CrossRefGoogle Scholar
Cruz, M., Jacobs, H. and Fripiat, J. J. (1972) The nature of the interlayer bonding in kaolin minerals: Proc. Int. Clay Conf., Madrid, pp. 3544.Google Scholar
Farmer, V. C. and (in part) Russell, J. D. (1966) Effect of particle size and structure on the vibrational frequencies of layer silicates: Spectrochim. Acta 22, 389398.CrossRefGoogle Scholar
Giese, R. F. (1973) Interlayer bonding in kaolinite, dickite and nacrite: Clays & Clay Minerals 21, 145149.CrossRefGoogle Scholar
Gieseking, J. E. (1939) Mechanism of cation exchange in montmorillonite–beidellite–nontronite type of clay minerals: Soil Sci. 47, 113.CrossRefGoogle Scholar
Herbillon, A. J., Mestdagh, M. M., Vielvoye, L. and Derouane, E. G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils: Clay Miner. 11, 201219.CrossRefGoogle Scholar
Jackson, M. L. (1974) Soil Chemical Analysis—Advanced course, 2nd edition, 9th printing, 895 pp. Published by the author, Madison.Google Scholar
Jackson, M. L. and Hellman, N. N. (1941) X-ray diffraction procedure for positive differentiation of montmorillonite from hydrous mica: Soil Sci. Soc. Am. Proc. 6, 133145.CrossRefGoogle Scholar
Lee, S. Y., Jackson, M. L. and Brown, J. L. (1975) Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron microscopy: Clays & Clay Minerals 23, 125129.CrossRefGoogle Scholar
Miller, J. G. and Oulton, T. D. (1970) Prototropy in kaolinite during percussive grinding: Clays & Clay Minerals 18, 313323.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M. and Quirk, J. P. (1968) Infrared spectra of kaolin–mineral–dimethyl sulfoxide complexes: J. Phys. Chem. 72, 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1970) The intercalation of polar organic compound into kaolinite: Clay Miner. 8, 421434.CrossRefGoogle Scholar
Ormsby, W. C., Shartsis, J. M. and Woodside, K. H. (1962) Exchange behavior of kaolins of varying degree of crystallinity: J. Am. Ceram. Soc. 45, 361366.CrossRefGoogle Scholar
Pauling, L. (1970) General Chemistry, 3rd edition: W. H. Freeman, San Francisco.Google Scholar
Range, K. J., Range, A. and Weiss, A. (1969) Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloysite minerals: Proc. 3rd Int. Clay Conf., Tokyo, Vol. 1, pp. 313.Google Scholar
Theng, B. K. G. (1974) The Chemistry of Clay–Organic Reactions: John Wiley, New York.Google Scholar
Thiry, M. and Weber, F. (1977) Convergence de compartement entre les interstratifies kaolinite–smectite et les fireclays: Clay Miner. 12, 8391.CrossRefGoogle Scholar
Wada, K. (1961) Lattice expansion of kaolin minerals by potassium acetate treatment: Am. Mineral. 46, 7891.Google Scholar
Wada, K. and Yamada, H. (1968) Hydrazine intercalation–intersalation for differentiation of kaolin minerals from chlorites: Am. Mineral. 53, 334339.Google Scholar
Weiss, A., Thielepape, W., Göring, G., Ritter, W. and Schäfer, H. (1963) Kaolinite-Einlagerungs-Verbindungen: Proc. 1st Int. Clay Conf., Stockholm, Vol. 1, pp. 287305.Google Scholar
Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinite-Einlagerungsverbindungen: Proc. 2nd Int. Clay Conf., Jerusalem, Vol. 1, pp. 277293.Google Scholar
Weiss, A., Becker, H. O., Orth, H., Mai, G. and Wimmer, M. (1975) Mechanism of the intercalation into kaolinite and related silicates: Proc. 4th Int. Clay Conf., Mexico City, p. 411.Google Scholar
Wiewiora, A. and Brindley, G. W. (1969) Potassium acetate intercalation in kaolinite and its removal: effect of material characteristics: Proc. 3rd Int. Clay Conf., Tokyo, Vol. 1, pp. 723733.Google Scholar
Yariv, S. (1975) Infra-red study of interaction between caesium chloride and kaolinite: J. Chem. Soc. Faraday Trans. I. 75, 674684.CrossRefGoogle Scholar