Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-08T11:12:13.612Z Has data issue: false hasContentIssue false

Statistical analysis of geochemical data: a tool for discriminating between kaolin deposits of hypogene and supergene origin, Patagonia, Argentina

Published online by Cambridge University Press:  09 July 2018

F. Cravero*
Affiliation:
Departamento de Geología, INGEOSUR, UNS-CONICET, Universidad Nacional del Sur. San Juan 670. 8000 Bahía Blanca, Argentina
S. A. Marfil
Affiliation:
Departamento de Geología, INGEOSUR, UNS-CONICET, Universidad Nacional del Sur. San Juan 670. 8000 Bahía Blanca, Argentina CIC de la Provincia de Buenos Aires, Argentina
P. J. Maiza
Affiliation:
Departamento de Geología, INGEOSUR, UNS-CONICET, Universidad Nacional del Sur. San Juan 670. 8000 Bahía Blanca, Argentina
*

Abstract

The numerous kaolin deposits located in Patagonia, Argentina, have been formed by hypogene or supergene processes. The primary origin has been established from O18 and D isotopic composition of the main minerals, kaolinite and/or dickite, and from the behaviour of certain elements during the alteration. The aim of this paper was to find if there is a tool, other than oxygen-deuterium data, to establish the origin of the Patagonian kaolin deposits. To handle the large number of variables per sample, a statistical multivariate study was used. The Principal Component method defines, on one hand the variables that better characterize each deposit and, on the other hand, the correlation between them. Fifty seven elements were considered and those that were not explained using these two components (which represent 75% of the total variance of the model) were discarded. As a result, the contents of Fe2O3, P2O5, LOI, Sr, Y, Zr, V, Pb, Hf, Rb, S and REE were used and the results show that the two components separate the deposits into two fields that are consistent with the process of formation. The first component indicates that Fe2O3, Y, Rb, U and HREE are more abundant in the supergene deposits, whereas, Sr, Pb, S and V are more abundant in the hypogene deposits. The second component shows that S, P2O5 and the LREE are enriched in the hydrothermal deposits, whereas Zr is more abundant in those formed under weathering conditions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Condie, K.C., Dengate, J. & Cullers, R.J. (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, USA. Geochimica et Cosmochimica Ada, 59, 279294.Google Scholar
Cravero, M.F., Domínguez, E. & Murray, H.H. (1991) Valores δO18 y δD n caolinitas, indicadores de un clima templado moderado durante el Jurásico Superior-Cretácico Inferior de la Patagonia, Argentina. Revista Asociación Geológica Argentina, 46, 2025.Google Scholar
Cravero, F., Domínguez, E. & Iglesias, C. (2001) Genesis and applications of the Cerro Rubio kaolin deposit, Patagonia (Argentina). Applied Clay Science, 18, 157172.Google Scholar
De Groot, P. & Baker, J.H. (1992) High element mobility in 1.9-1.86 Ga hydrothermal alteration zones, Bergslagen, central Sweden: relationships with exhalative Fe-ore mineralizations. Precambrian Research, 54, 109130.Google Scholar
Dill, H., Bosse, R., Henning, H. & Fricke, A. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of northwestern Peru. Mineralium Deposita, 32, 149163 Google Scholar
Dill, H.G., Bosse, H.R. & Kassbohm, J. (2000) Mineralogical and chemical studies of volcanic-related argillaceous industrial minerals of the Central American Cordillera (western El Salvador). Economic Geology, 95, 517538.Google Scholar
Dominguez, E. & Murray, H.H. (1995) Genesis of the Chubut river valley kaolin deposits, and their industrial applications. Pp. 129134 in: Proceedings of the 10th International Clay Conference, 1993 (Churchman, G.J., Fitzpatrick, R.W. & Eggleton, R.A., editors) CSIRO Publishing, Melbourne, Australia.Google Scholar
Dominguez, E. & Murray, H.H. (1997) The Lote 8 Kaolin Deposit, Santa Cruz, Argentina. Genesis and paper industrial application. Pp. 5764 in: Proceedings of the 11th International Clay Conference (Kodama, H., Mermut, A.M. & Torrance, J.K., editors) Ottawa, Canada.Google Scholar
Dominguez, E., Iglesias, C. & Dondi, M. (2008) The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Applied Clay Science, 40, 124142.Google Scholar
Galán, E., Aparicio, P., Gonzalez, I. & Miras, A. (1998) Contribution of multivariate analysis to the correlation of some properties of kaolin with its mineralogical and chemical composition. Clay Minerals, 33, 6675.Google Scholar
Galán, E., Fernández-Caliani, J.C., Miras, A., Aparicio, P. & Marquez, M.G. (2007) Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain. Clay Minerals, 42, 341352.Google Scholar
Gouveia, M.A., Prudencio, M.I., Figueiredo, M.O., Pereira, L.C.J., Waerenborgh, J.C., Morgado, I., Pena, T. & Lopes, A. (1993) Behavior of REE and other trace and major elements during weathering of granitic rocks, Évora, Portugal. Chemical Geology, 107, 293296.Google Scholar
Maiza, P., Marfil, S., Cardellach, E. & Zunino, J. (2009) Geoquímica de la zona caolinizada de Mina Estrella Gaucha (Prov. de Chubut, Argentina). Revista de la Asociación Geologica Argentina, 64, 426432.Google Scholar
Malvicini, L. & Llambías, E. (1974) In: Malvicini, L. & Vallés, J. M. (1984) Metalogénesis. Capítulo III-5. Geología y recursos naturales de la Provincia de Río Negro. Relatorio del IX Congreso Geológico Argentino, San Carlos de Bariloche. Río Negro, 649-662.Google Scholar
Marfil, S.A., Maiza, P.J., Cardellach, E. & Corbella, M. (2005) Origin of kaolin deposits in the ‘Los Menucos’, Río Negro Province, Argentina. Clay Minerals, 40, 283293.Google Scholar
Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206210.CrossRefGoogle Scholar
Pandarinath, K., Dulski, P., Torres Alvarado, I.S. & Verma, S.P. (2008) Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics, 37, 5372.Google Scholar
Pankhurst, R.J. & Rapela, W. (1995) Production of Jurassic rhyolite by anatexis in the lower crust of Patagonia. Earth and Planetary Science Letters, 134, 2326.Google Scholar
Pankhurst, R.J., Leat, P.T., Sruoga, P., Rapela, C.W., Marquez, M., Storey, B.C. & Riley, T.R. (1998) The Con Aike province of Patagonia and related rocks in West Antartica: A silicic large igneous province. Journal of Volcanology and Geothermal Research, 81, 113136.Google Scholar
Parsapoor, A., Kahlili, M. & Mackinzadeh, H.A. (2009) The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (central Iran). Journal of Asian Earth Sciences, 34, 123134.Google Scholar
Sturchio, N.C., Muehlenbchs, K. & Meitz, M. (1986) Element redistribution during hydrothermal alteration of rhyolite in an active geothermal system: Yellowstone drill cores Y-7 and Y-8. Geochimica et Cosmochimica Acta, 50, 16191631.Google Scholar
van der Weijden, C.H. & van der Weijden, R.D. (1995) Mobility of major, minor and some redox-sensitive trace elements and rare-earth elements during weathering of four granitoids in central Portugal. Chemical Geology, 125, 149167.Google Scholar