Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-08T16:04:46.075Z Has data issue: false hasContentIssue false

Mineralogy and geochemistry of hydrothermal kaolins from the Adelita mine, Patagonia (Argentina); relation to other mineralization in the area

Published online by Cambridge University Press:  09 July 2018

L. E. Grecco
Affiliation:
Department of Geology, INGEOSUR, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina Researcher at CONICET, Argentina
S. A. Marfil*
Affiliation:
Department of Geology, INGEOSUR, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina Researcher at CIC of the Province of Buenos Aires, Argentina
P. J. Maiza
Affiliation:
Department of Geology, INGEOSUR, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina Researcher at CONICET, Argentina
*

Abstract

The kaolin deposit at the Adelita mine, located in the province of Rí;o Negro (Patagonia, Argentina), was studied. Petrographic studies on thin sections and chemical analyses of major, minor and trace elements on bulk samples were carried out. The kaolin content of the rock ranges from 31% to 65%. The mineralogy of the working front, which is about 45 m thick, varies from the upper zone, where the rock is strongly silicified, stained with iron oxides and carbonated, grading downwards to a kaolinized zone, with a quartz-kaolinite-dickite assemblage with relict lithic particles and a smaller amount of iron oxides, and ending in the deepest zone where dickite, alunite, diaspore, quartz and scarce associated kaolinite occur.

The kaolin mineralogy was determined by SEM, XRD, DTA-TG, IR and δ18O and δD isotope analyses. The S, Ba and Sr contents are enriched during hydrothermal alteration, whereas Cr, Nb, Ti and lanthanide elements are concentrated mainly during weathering. The (Ba+Sr) concentrations in the samples studied vary between 600 and 6000 ppm and (Ce+Y+La) between 2 and 150 ppm; (Cr+Nb) remains constant for all the samples, whereas (TiO2+Fe2O3) is below 0.3%. In the hypogene deposits P2O5 is also more abundant and increases with the degree of alteration. Chondritenormalized rare earth element diagram shows a marked enrichment in LREE relative to HREE, with negative europium anomalies and D18O values range between 3.8‰ and 7.7‰ and δD between –123‰ and –103‰, suggesting that kaolin formed from the hydrothermal alteration of rhyolitic tuffs.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boynton, N.V. (1984) Cosmochemistry of the rare earth elements: meteorite studies. Pp. 63–114 in: Rare Earth Element Geochemistry (P. Henderson, editor). Developments in Geochemistry, 2, Elsevier.CrossRefGoogle Scholar
Cravero, M.F. & Dominguez, E.A. (1999) Origin of sedimentary kaolin in the Neuquén basin, Argentina as determined by oxygen isotopes. Periodico di Mineralogía, 68, 213–222.Google Scholar
Cravero, M.F., Domínguez, E.A. & Murray, H.H. (1991) Valores δO18 y δD en caolinitas, indicadores de un clima templado moderado durante el Jurásico Superior-Cretácico Inferior de la Patagonia, Argentina. Revista Asociaciön Geolö gica Argentina, 46, 20–25.Google Scholar
Cravero, M.F., Domínguez, E.A. & Murray, H. (2001) Genesis and applications of the Cerro Rubio kaolin deposit, Patagonia (Argentina). Applied Clay Science, 18, 157–172.Google Scholar
Cravero, M.F., Marfil, S.A. & Maiza, P.J. (2010) Statistical analysis of geochemical data: A tool: to discriminate between kaolin deposits of hypogene and supergene origin. Patagonia, Argentina. Clay Minerals, 183–196.Google Scholar
Dill, H., Bosse, R., Henning, H. & Fricke, A. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of northwestern Peru. Mineralium Deposita, 32, 149–163.CrossRefGoogle Scholar
Dill, H.G., Bosse, H.R. & Kassbohm, J. (2000) Mineralogical and chemical studies of volcanic related argillaceous industrial minerals of the Central American Cordillera (western El Salvador). Economic Geology, 95, 517–538.Google Scholar
Domínguez, E. & Murray, H.H. (1995) Genesis of the Chubut river valley kaolin deposits, and their industrial applications. Pp. 129–134 in: Proceedings of the 10th International Clay Conference, 1993 (G.J. Churchman, R.W. Fitzpatrick & R.A. Eggleton, editors) CSIRO Publishing, Melbourne, Australia.Google Scholar
Domínguez, E. & Murray, H.H. (1997) The Lote 8 kaolin deposit, Santa Cruz, Argentina. Genesis and paper industrial application. Pp. 57–64 in: Proceedings of the 11th International Clay Conference (Kodama, H., Mermut, A.M. & Torrance, J.K., editors) Ottawa, Canada.Google Scholar
Domínguez, E., Iglesias, C. & Dondi, M. (2008) The geology and mineralogy of a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Applied Clay Science, 40, 124–142.Google Scholar
Ece, O., Schroeder, P.A., Smilley, M.J. & Wampler, J.M. (2008) Acid-sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey. Clay Minerals, 43, 281–315.CrossRefGoogle Scholar
Galán, E., Fernández-Caliani, J.C., Miras, A., Aparicio, P. Márquez, M.G. (2007) Residence and fractionation of rare earth elements during kaolinization of alkaline peraluminous granites in NW Spain. Clay Minerals, 42, 341–352.CrossRefGoogle Scholar
Gouveia, M.A., Prudencio, M.I., Figueiredo, M.O., Pereira, L.C.J., Waerenborgh, J.C., Morgado, I., Pena, T. & Lopes, A. (1993) Behavior of REE and other trace and major elements during weathering of granitic rocks, E’vora, Portugal. Chemical Geology, 107, 293–296.Google Scholar
Hayase, K. & Manera, T. (1973) A statistical analysis of experimental data on filling temperature of fluid inclusions in fluorite from fluorite deposits of Patagonia Argentina. Mining Geology, Japan, 23, 1–2.Google Scholar
Labudía, C.H. & Bjerg, E.A. (2001) Grupo Los Menucos. Redefiniciön estratigráfica del Triásico superior del Macizo Nordpatagönico. Revista de la Asociaciön Geolögica Argentina, 54, 405–406.Google Scholar
Labudia, C. & Hayase, K. (1975) Relaciones entre las rocas y las mineralizaciones de Pb-Cu-Zn, fluorita y caolín de los alrededores de Los Menucos, Prov. de Río Negro, Argentina. Sexto Congreso Geolögico Argentino, Actas, Bahía Blanca, 3, 69–80.Google Scholar
Mackenzie, R.C. (1970) Differential Thermal Analysis Pp. 524–527, Academic Press, New York.Google Scholar
Maiza, P.J. (1972) Los yacimientos de caolín originados por la actividad hidrotermal en los principales distritos caoliníferos de la Patagonia. República Argentina. Tesis Doctoral. Universidad Nacional del Sur. Bahía Blanca. Argentina (inédita), 136 pp.Google Scholar
Maiza, P.J., Marfil, S.A., Cardellach, E. & Zunino, J. (2009) Geoquímica de la zona caolinizada de Mina Estrella Gaucha, Provincia de Chubut. Revista de la Asociaciön Geolögica Argentina. 64, 426–432.Google Scholar
Manera, T. (1972) La mineralizaciön de los yacimientos de fluorita de la Provincia de Río Negro. Tesis Doctoral, Universidad Nacional del Sur, Bahía Blanca, Argentina. 145 pp.Google Scholar
Marfil, S.A., Maiza, P.J., Cardellach, E. & Corbella, M. (2005) Origin of kaolin deposits in the “Los Menucos” area (Río Negro Province, Argentina). Clay Minerals. 40, 283–293.CrossRefGoogle Scholar
Marfil, S.A., Maiza, P.J. & Montecchiari, N. (2010) Alteration zonation in Loma Blanca Kaolin deposit, Los Menucos, province of Rio Negro, Argentina. Clay Minerals, 45, 157–169.Google Scholar
Pandarinath, K., Dulski, P., Torres Alvarado, I.S. & Verma, S.P. (2008) Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics, 37, 53–72.Google Scholar
Papoulis, D. & Tsolis-Katagas, P. (2008) Formation of alteration zones and kaolin genesis, Limnos Island, northeast Aegean Sea, Greece. Clay Minerals, 43, 631–646.Google Scholar
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004). Monazite alteration mechanisms and depletion measurements in kaolins. Applied Clay Science, 24, 271–285 Google Scholar
Parsapoor, A., Kahlili, M. & Mackinzadeh, H.A. (2009) The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (central Iran). Journal of Asian Earth Sciences, 34, 123–134.Google Scholar
Roy, R. & Osborn, E. (1954) The system Al2O3-SiO2- H2O. American Mineralogist, 39, 853–85.Google Scholar
Sheppard, S.M.F & Gilg, H.A. (1996) Stable isotope geochemistry of clay minerals. Clay Minerals, 31, 1–24.Google Scholar
Sturchio, N.C., Muehlenbchs, K. & Meitz, M. (1986) Element redistribution during hydrothermal alteration of rhyolite in an active geothermal system: Yellowstone drill cores Y-7 and Y-8. Geochimica et Cosmochimica Acta, 50, 1619–1631.Google Scholar
Terakado, Y. & Fujitani, T. (1998) Behavior of the rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan. Geochimica et Cosmochimica Acta, 62, 1903–1998.Google Scholar
van del Marel, H.W. & Beutelspacher, H. (1976) Clay and related minerals. Pp. 65–95 in: Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier, The Netherlands.Google Scholar