Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-05T01:55:34.520Z Has data issue: false hasContentIssue false

Ground State Solutions of Nehari–Pankov Type for a Superlinear Hamiltonian Elliptic System on ℝN

Published online by Cambridge University Press:  20 November 2018

Xianhua Tang*
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R. China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is concerned with the following elliptic system of Hamiltonian type

$$\left\{ \begin{align} & -\Delta u+V\left( x \right)u={{W}_{v}}\left( x,u,v \right),\,x\in {{\mathbb{R}}^{N}}, \\ & -\Delta v+V\left( x \right)v={{W}_{u}}\left( x,u,v \right),\,x\in {{\mathbb{R}}^{N}}, \\ & u,v\in {{H}^{1}}\left( {{\mathbb{R}}^{N}} \right), \\ \end{align} \right.$$

where the potential $V$ is periodic and $0$ lies in a gap of the spectrum of $-\Delta +V,W\left( x,u,v \right)$ is periodic in $x$ and superlinear in $u$ and $v$ at infinity. We develop a direct approach to finding ground state solutions of Nehari–Pankov type for the above system. Our method is especially applicable to the case when

$$W\left( x,u,v \right)=\sum\limits_{i=1}^{k}{\,\int _{0}^{\left| \alpha iu+\beta iv \right|}\,{{g}_{i}}\left( x,\,t \right)t\text{d}t+\sum\limits_{j=1}^{l}{\int_{0}^{\sqrt{{{u}^{2}}+2{{b}_{juv+aj{{v}^{2}}}}}}{{{h}_{j}}\left( x,t \right)tdt,}}}$$

where ${{\alpha }_{i}},{{\beta }_{i}},{{a}_{j}},{{b}_{j}}\in \mathbb{R}$ with $\alpha _{i}^{2}+\beta _{i}^{2}\ne 0$, and ${{a}_{j}}>b_{j}^{2},{{g}_{i}}\left( x,t \right)$ and ${{h}_{j}}\left( x,t \right)$ are nondecreasing in $t\in {{\mathbb{R}}^{+}}$ for every $x\in {{\mathbb{R}}^{N}}$ and ${{g}_{i}}\left( x,0 \right)={{h}_{j}}\left( x,0 \right)=0$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Alves, C. O., Carriâo, P. C., and Miyaguki, O. H., On the existence of positive solutions of a perturbed Hamiltonian system in RN. J. Math. Anal. Appl. 276(2002), no. 2, 673690. http://dx.doi.Org/1 0.101 6/S0022-247X(02)00413-4 Google Scholar
[2] Âvilaand, A. I. Yang, J., On the existence and shape of least energy solutions for some elliptic systems. J. Differential Equations 191(2003), no. 2, 348376. http://dx.doi.Org/1 0.101 6/S0022-0396(03)0001 7-2 Google Scholar
[3] Âvilaand, A. I. Yang, J., Multiple solutions of nonlinear elliptic systems. NoDEA Nonlinear Differential Equations Appl. 12(2005), no. 4, 459479. http://dx.doi.org/10.1007/s00030-005-0022-7 Google Scholar
[4] Bartsch, T. and de Figueiredo, D. G., Infinitely many solutions of nonlinear elliptic systems.In: Topics in nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 35, Birkhâuser, Basel, 1999, pp. 5167.Google Scholar
[5] Bartsch, T. and Ding, Y. H., Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math.Nachr. 279(2006), no. 12,12671288. http://dx.doi.Org/1 0.1002/mana.200410420 Google Scholar
[6] Benci, V. and Rabinowitz, P. H., Critical point theorems for indefinite functionals. Invent. Math. 52(1979), no. 3, 241273. http://dx.doi.Org/10.1007/BF01389883 Google Scholar
[7] de Figueiredo, D. G. and Ding, Y. H., Strongly indefinite functions and multiple solutions of elliptic systems. Tran. Amer. Math.Soc. 355(2003), no. 7, 29732989. http://dx.doi.org/10.1090/S0002-9947-03-03257-4 Google Scholar
[8] de Figueiredo, D. G. and Felmer, P. L., Onsuperquadratic elliptic systems. Trans. Amer. Math. Soc. 343(1994), no. 1, 99116. http://dx.doi.org/10.1090/S0002-9947-1994-1214781-2 Google Scholar
[9] Ding, Y. H., Infinitely many entire solutions of an elliptic system with symmetry. Topol. Methods Nonlinear Anal. 9(1997), no. 2, 313323.Google Scholar
[10] Ding, Y. H., Variational methods for strongly indefinite problems. Interdisciplinary Mathematical Sciences, 7, World Scientific Publishing, Hackensack, NJ, 2007.Google Scholar
[11] Edmunds, D. E. and Evans, W. D., Spectral theory and differential operators. Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1987.Google Scholar
[12] He, S., Zhang, R., and Zhao, E., A note on a superlinear and periodic elliptic system in the whole space. Comm. Pure. Appl. Anal. 10(2011), no. 4,11491163. http://dx.doi.Org/1 0.3934/cpaa.201 1.1 0.1 1 49 Google Scholar
[13] Kryszewski, W. and Szulkin, A., An infinite-dimensional Morse theory with applications. Trans. Amer. Math.Soc. 349(1997), no. 8, 31843234. http://dx.doi.org/10.1090/S0002-9947-97-01963-6 Google Scholar
[14] Kryszewski, W. and Szulkin, A., Generalized linking theorem with an application to semilinear Schrodinger equations. Adv. Differential Equations 3(1998), no. 3, 441472.Google Scholar
[15] Li, G. and Szulkin, A., An asymptotically periodic Schrb'dinger equation with indefinite linear part. Commun. Contemp. Math. 4(2002), no. 4, 763776. http://dx.doi.Org/1 0.1142/S021 91 99702000853 Google Scholar
[16] Li, G. and Yang, J., Asymptotically linear elliptic systems. Comm. Partial Differential Equations 29(2004), no. 5-6, 925954. http://dx.doi.org/10.1081/PDE-120037337 Google Scholar
[17] Liao, F., Tang, X.H., and J. Thsa%, Existence of solutions for periodic elliptic system with general superlinear nonlinearity. Z. Angew. Math.Phys. http://dx.doi.Org/10.1007/s00033-014-0425-6 Google Scholar
[18] Liao, F., Tang, X. H., J. Thsa, and D. Qin, Semi-classical solutions of perturbed elliptic system with generalsuperlinear nonlinearity. Bound.Value Probl.2014(2014), no. 208.Google Scholar
[19] Pankov, A., Periodic nonlinear Schrodinger equation with application to photonic crystals. Milan J. Math. 73(2005), 259287. http://dx.doi.org/10.1007/s00032-005-0047-8 Google Scholar
[20] Schechter, M. and Zou, W. M., Weak linking theorems and Schrodinger equations with critical Sobolev exponent. ESAIM Control Optim. Calc. Var. 9(2003), 601619. http://dx.doi.Org/10.1051/cocv:2003029 Google Scholar
[21] Sirakov, B., On the existence of solutions of Hamiltonian elliptic systems in RN. Adv. Differential Equations 5(2000), no. 10-12, 14451464.Google Scholar
[22] Szulkin, A. and T. Weth, Ground state solutions for some indefinite problems. J. Funct. Anal. 257(2009), no. 12, 38023822. http://dx.doi.Org/10.1016/j.jfa.2009.09.013 Google Scholar
[23] Tang, X. H., Non-Nehari manifold method for superlinear Schrodinger equation. Taiwanese J. Math. 18(2014), no. 6, 19571979.Google Scholar
[24] Tang, X. H., Non-Nehari manifold method for asymptotically linear Schrodinger equation. J. Aust. Math. Soc. 98(2015), no. 1, 104116. http://dx.doi.org/10.1017/S144678871400041X Google Scholar
[25] Tang, X. H., Non-Nehari manifold method for asymptotically periodic Schrodinger equations. Sci. China Math. 58(2015), no. 4, 715728. http://dx.doi.org/10.1007/s11425-014-4957-1 http://dx.doi.Org/1 0.1007/s11425-014-4957-1 Google Scholar
[26] Wang, J., Xu, J., and Zhang, F., Existence and multiplicity of solutions for asymptotically Hamiltonian elliptic systems in RN. J. Math. Anal.Appl. 367(2010), no. 1,193203. http://dx.doi.Org/10.1016/j.jmaa.2O10.01.002 Google Scholar
[27] Wang, J., Xu, J., and Zhang, F., Existence of solutions for nonperiodicsuperquadratic Hamiltonian elliptic systems. Nonlinear Analysis 72(2010), no. 3-4, 19491960. http://dx.doi.Org/10.1016/j.na.2009.09.035 Google Scholar
[28] Willem, M., Minimax theorems.Progress in nOnlinear Differential Equations and their Applications, 24, BirkhâuserBoston, Boston, MA, 1996.Google Scholar
[29] Xia, L., Zhang, J., and Zhao, F., Ground state solutions for superlinear elliptic systems on K.N. J. Math.Anal. Appl. textbf401(2013), no. 2, 518525. http://dx.doi.Org/10.1016/j.jmaa.2012.12.041 Google Scholar
[30] Zhang, R., Chen, J., and Zhao, F., Multiple solutions for superlinear elliptic systems ofHamiltonin type. Disc. Contin.Dyn. Syst. 30(2011), no. 4,12491262. http://dx.doi.Org/1 O.3934/dcds.2O1 1 .30.1249 Google Scholar
[31] Zhang, J., Qin, W., and Zhao, F., Existence and multiplicity of solutions for asymptotically linear nonperiodic Hamiltonian elliptic system. J. Math. Anal. Appl. 399(2013), no. 2, 433441. http://dx.doi.Org/1 0.101 6/j.jmaa.2O1 2.10.030 Google Scholar
[32] Zhang, J., Tang, X., and Zhang, W., Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms. Nonlinear Anal. 95(2014), 110. http://dx.doi.Org/10.1016/j.na.2013.07.027 Google Scholar
[33] Zhao, F., Zhao, L., and Ding, Y., Multiple solutions for asympototically linear elliptic systems. NoDEA Nonlinear Differential Equations Appl. 15(2008), no. 6, 673688. http://dx.doi.org/10.1007/s00030-008-7080-6 Google Scholar
[34] Zhao, F., Zhao, L., and Ding, Y., Multiple solutions for a superlinear and periodic ellipic system on RN. Z. Angew. Math. Phys. 62(2011), no. 3, 495511. http://dx.doi.Org/10.1007/s00033-010-0105-0 Google Scholar
[35] Zhao, F., Zhao, L., and Ding, Y., A note on superlinear Hamiltonian elliptic systems. J. Math. Phys. 50(2009), no. 11, 112702. http://dx.doi.Org/10.1063/1.3256120 Google Scholar
[36] Zhao, F. and Ding, Y., On Hamiltonian elliptic systems with periodic or non-periodic potentials. J. Differential Equations 249(2010), no. 12, 29642985.http://dx.doi.Org/10.1016/j.jde.2O10.09.014 Google Scholar
[37] Zhao, L. and Zhao, F., On ground state solutions for superlinear Hamiltonian elliptic systems. Z. Angew.Math. Phys. 64(2013), no. 3, 403418. http://dx.doi.org/10.1007/s00033-012-0258-0 Google Scholar