Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T08:39:57.170Z Has data issue: false hasContentIssue false

Collineations of Projective Moulton Planes

Published online by Cambridge University Press:  20 November 2018

William A. Pierce*
Affiliation:
Syracuse University and West Virginia University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the article "Moulton Planes" (10), I studied F. R. Moulton's construction over any field containing a multiplicative subgroup of index 2. In "Collineations of Affine Moulton Planes" (11), I determined the collineations between two arbitrary affine Moulton planes.

The purpose now is to describe the collineations between two projective Moulton planes. Since the affine collineations are known from (11), we are concerned with collineations mapping ideal lines onto ordinary lines. Notations and conventions of (10) and (11) are retained.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1964

References

1. Andr, J.é, Projektive Ebenen über Fastkörpern, Math. Z., 62 (1955), 137160.Google Scholar
2. Andr, J.é, Ùber verallgemeinerte Moulton-Ebenen, Arch. Math., 13 (1962), 290301.Google Scholar
3. Barlotti, A., Le possibili configurazioni del sistema delle coppie punto-retta (A, a) per cui un piano grafico risulta (A, a) transitivo, Boll. Un. Mat. Ital., 12 (1957), 212226.Google Scholar
4. Carlitz, L., A theorem on permutations in a finite field, Proc. Am. Math. Soc, 11 (1960), 456459.Google Scholar
5. Hall, M. Jr., Projective planes, Trans. Am. Math. Soc, 54 (1943), 229277.Google Scholar
6. Lenz, H., Kleiner desarguesscher Satz und Dualität in projektiven Ebenen, Über. Dtsch. Math. Ver. 57 (1954), 2031.Google Scholar
7. McConnel, R. M., Ph.D. Thesis, Duke University (1962).Google Scholar
8. Moulton, F. R., A simple non-Desarguesian plane, Trans. Am. Math. Soc, 3 (1902), 192195.Google Scholar
9. Pickert, G., Projektive Ebenen (Berlin, 1955).Google Scholar
10. Pierce, W. A., Moulton planes, Can. J. Math., 13 (1961), 427436.Google Scholar
11. Pierce, W. A., Collineations of affine Moulton planes, Can. J. Math., 16 (1964),46-62. 12. J. C.D. Spencer, On the Lenz-Barlotti classification of projective planes, Quart. J. Math., Oxford (2), 2 (1960), 241257.Google Scholar
13. Veblen, O. and Wedderburn, J. H. M., Non-Desarguesian and non-Pascalian geometries. Trans. Am. Math. Soc, 8 (1907), 379388.Google Scholar