Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T21:37:51.013Z Has data issue: false hasContentIssue false

SUSCEPTIBILITY OF IMMATURE STAGES OF MELANOPLUS SANGUINIPES (FAB.) (ORTHOPTERA: ACRIDIDAE) TO NOSEMA CUNEATUM HENRY (MICROSPORIDA: NOSEMATIDAE) AND ITS EFFECT ON HOST FECUNDITY1

Published online by Cambridge University Press:  31 May 2012

M.A. Erlandson
Affiliation:
Agriculture Canada Research Station, 107 Science Cresent, Saskatoon, Saskatchewan, Canada S7N 0X2
Al B. Ewen
Affiliation:
Agriculture Canada Research Station, 107 Science Cresent, Saskatoon, Saskatchewan, Canada S7N 0X2
M.K. Mukerji
Affiliation:
Agriculture Canada Research Station, 107 Science Cresent, Saskatoon, Saskatchewan, Canada S7N 0X2
C. Gillott
Affiliation:
Agriculture Canada Research Station, 107 Science Cresent, Saskatoon, Saskatchewan, Canada S7N 0X2

Abstract

Second- and 3rd-instar nymphs of Melanoplus sanguinipes (Fab.) were more susceptible to Nosema cuneatum Henry infection than were 5th-instar nymphs. Lethal times were significantly lower for 2nd- and 3rd-instar nymphs inoculated with 1.0 × 106 and 104N. cuneatum spores/individual than for similarly treated 5th-instar nymphs and a much higher percentage of the latter were uninfected at the end of the experimental period (40–60 days post-inoculation). Fifth-instar nymphs inoculated with 1.0 × 106 spores/individual showed reduced adult longevity. The number of eggs laid per female was not significantly different for inoculated or untreated 5th-instar nymphs. However, the dry weights of eggs laid by inoculated grasshoppers were significantly lower and fewer eggs hatched than for those laid by untreated grasshoppers. Twenty to 30% of the progeny from inoculated 5th-instar nymphs had detectable levels of N. cuneatum sporoblasts and spores.

Résumé

Des larves de stades 2 et 3 de Melanoplus sanguinipes (Fab.) se sont avérées plus susceptibles au Nosema cuneatum Henry que des larves de 5ième stade. Les délais de mortalité étaient significativement plus courts dans le cas des larves des stades 2 et 3 inoculées avec 1.0 × 106 et 104 spores de N. cuneatum par individu, que des larves de 5ième stade traitées de la même façon, et un pourcentage plus élevé de ces dernières étaient restées saines à la fin de l’expérience (40–60 jours post-inoculation). Des larves de 5ième stade inoculées avec 1.0 × 106 spores par individu ont montré une longévité raccourcie. Le nombre d’oeufs pondus par femelle n’était pas significativement différent entre des criquets témoins et ceux traités au 5ième stade. Cependant le poids sec et le pourcentage d’éclosion des oeufs pondus par des criquets inoculés étaient significativement inférieurs à ceux mesurés chez des criquets sains. De 20% à 30% de la progéniture de criquets inoculés au stade 5 ont montré des niveaux sensibles de sporoblastes et de spores du N. cuneatum.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Erlandson, M.A., Mukerji, M.K., Ewen, A.B., and Gillott, C.. 1985. Comparative pathogenicity of Nosema acridophagus Henry and Nosema cuneatum Henry (Microsporida: Nosematidae) for Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Can. Ent. 117: 11671175.CrossRefGoogle Scholar
Ewen, A.B., and Mukerji, M.K.. 1980. Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. J. Invertebr. Pathol. 35: 295303.CrossRefGoogle Scholar
Finney, D.J. 1971. Probit Analysis. University Press, Cambridge.Google Scholar
Gaulger, R.R., and Brooks, W.M.. 1975. Sublethal effects of infection by Nosema heliothidis in the corn earworm, Heliothis zea. J. Invertebr. Pathol. 26: 5763.Google Scholar
Henry, J.E. 1971. Nosema cuneatum sp. n. (Microsporida: Nosematidae) in grasshoppers (Orthoptera: Acrididae). J. Invertebr. Pathol. 17: 164171.CrossRefGoogle Scholar
Henry, J.E. 1972. Epizootiology of infections by Nosema locustae Canning (Microsporida: Nosematidae) in grasshoppers. Acrida 1: 111120.Google Scholar
Henry, J.E., and Oma, E.A.. 1974. Effects of infections by Nosema locustae Canning, Nosema acridophagus Henry, and Nosema cuneatum Henry (Microsporida: Nosematidae) in Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Acrida 3: 223231.Google Scholar
Henry, J.E., Tiahrt, K., and Oma, E.A.. 1973. Importance of timing, spore concentrations, and levels of spore carrier in applications of Nosema locustae (Microsporida: Nosematidae) for control of grasshoppers. J. Invertebr. Pathol. 21: 263272.CrossRefGoogle Scholar
Nordin, G.L. 1975. Transovarial transmission of a Nosema sp. infecting Malacasoma americana. J. Invertebr. Pathol. 25: 221228.CrossRefGoogle Scholar
Pickford, R., and Randell, R.L.. 1969. A non-diapause strain of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Can. Ent. 101: 894896.CrossRefGoogle Scholar
Snow, J.W., Lewis, W.J., and Sparks, A.N.. 1970. Mating of normal and sterilized colonized and native corn earworms with emphasis on failures of pairs to separate after copulation. J. econ. Ent. 63: 18731876.CrossRefGoogle Scholar
Tanada, Y. 1976. Epizootiology and microbial control. pp. 247280in Bulla, L.A. Jr., and Cheng, T.C. (Eds.), Comparative Pathobiology Vol. I. Plenum Press, New York.Google Scholar
Weiser, J. 1976. Microsporida in invertebrates: host–parasite relations at the organism level. pp. 164201in Bulla, L.A. Jr., and Cheng, T.C. (Eds.), Comparative Pathobiology Vol. I. Plenum Press, New York.Google Scholar
Uvarov, B. 1966. Grasshopper and Locusts. A Handbook of General Acridology. Vol. I. University Press, Cambridge. 481 pp.Google Scholar