Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-16T17:14:41.417Z Has data issue: false hasContentIssue false

Spacing of traps baited with species-specific Lymantria pheromones to prevent interference by antagonistic components

Published online by Cambridge University Press:  02 April 2012

Regine Gries
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
Paul W. Schaefer
Affiliation:
United States Department of Agriculture, Agricultural Research Service, Beneficial Insects Introduction Research, Newark, Delaware 19713, United States of America
Tadao Gotoh
Affiliation:
Forestry and Forest Products Research Institute, Tohoku Research Center, Nabeyashiki 92–25, Shimo-Kuriyagawa, Morioka, Iwate 020–0123, Japan
Stephen Takács
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
Gerhard Gries*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
*
3Corresponding author (e-mail: [email protected]).

Abstract

In pheromone-based surveys for detecting multiple species of exotic lymantriine moths (Lepidoptera: Noctuidae: Lymantriinae), spacing between traps baited with species-specific pheromone lures must be sufficient to prevent antagonistic effects of heterospecific pheromone on lure attractiveness. Conducting field experiments with the Japanese gypsy moth, Lymantria dispar japonica Motschulsky, in northern Honshu, Japan, we first determined which congeneric pheromone components have strong antagonistic effects on attraction of male moths to the conspecific pheromone (7R,8S)-cis-7,8-epoxy-2-methyloctadecane ((+)-disparlure). Since the most antagonistic compounds were pheromone/volatile components from the sympatric nun moth, L. monacha (L.), we then conducted experiments with paired traps baited with either a L. dispar (L.) pheromone lure ((+)-disparlure (50 µg)) or L. monacha pheromone lure (a mixture of (7R,8S)-cis-7,8-epoxyoctadecane ((+)-monachalure (50 µg)), (7Z)-2-methyloctadecene (5 µg), and (+)-disparlure (50 µg)). As spacing between paired traps increased (0, 0.5, 2, 7.5, 15, or 30 m), the antagonistic effect of the L. monacha lure on the attractiveness of the L. dispar lure decreased and finally disappeared. For pheromone-based detection surveys of multiple species of exotic lymantriine moths in North America to be effective, trap spacing of 15 m is recommended.

Résumé

Les inventaires de détection basés sur les phéromones des papillons lymantriidés exotiques (Lepidoptera : Noctuidae : Lymantriidae) nécessitent un espacement suffisant entre les pièges garnis d'appâts à phéromones spécifiques particulières pour éviter les effets antagonistes des hormones hétérospécifiques sur l'attraction des appâts. Dans des expériences de terrain avec la spongieuse japonaise, Lymantria dispar japonica Motschulsky, dans le nord du Honshû (Japon), nous avons d'abord déterminé les composantes congénériques qui ont de forts effets antagonistes sur l'attraction des papillons mâles à la phéromone conspécifique (7R,8S)-cis-7,8-époxy-2-méthyloctadécane ((+)-disparlure). Comme les composés les plus antagonistes sont la phéromone (composantes volatiles) de la nonne, L. monacha (L.), une espèce sympatrique, nous avons monté des expériences avec des pièges appariés garnis ou bien de l'appât phéromonal de L. dispar (L.) ((+)-disparlure (50 µg)) ou alors de l'appât phéromonal de L. monacha (un mélange de (7R,8S)-cis-7,8-époxyoctadécane ((+)-monachalure (50 µg)) de (7Z)-2-méthyloctadécène (5 µg) et de (+)-disparlure (50 µg). L'effet antagoniste de l'appât de L. monacha sur l'attraction de l'appât de L. dispar diminue en fonction de la distance entre les pièges appariés (0, 0,5, 2, 7,5, 15, 30 m) pour finalement disparaître. Nous recommandons un espacement de 15 m entre les pièges pour les inventaires de détection basés sur les phéromones d'espèces multiples de papillons lymantriidés exotiques en Amérique du Nord.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, T.C., and Roelofs, W.L. 1981. Initiation and termination of oriental fruit moth male response to pheromone concentrations in the field. Environmental Entomology, 10: 211218.CrossRefGoogle Scholar
Cardé, R.T., Roelofs, W.L., and Doane, C.C. 1973. Natural inhibitor of gypsy moth sex attractant. Nature (London), 241 (5390): 474475.CrossRefGoogle Scholar
Cardé, R.T., Doane, C.C., Baker, T.C., Iwaki, S., and Marumo, S. 1977. Attractancy of optically active pheromone for male gypsy moth. Environmental Entomology, 6: 768772.CrossRefGoogle Scholar
Graham, A. 1993. History of the vegetation: Cretaceous (Maastrichian) – Tertiary. Vol. 1. Flora of North America north of Mexico. Oxford University Press, New York.Google Scholar
Grant, G.G., Langevin, D., Liška, J., Kapitola, P., and Chong, J.M. 1996. Olefin inhibitor of gypsy moth, Lymantria dispar, is a synergistic pheromone component of nun moth, L. monacha. Naturwissenschaften, 83: 328330.Google Scholar
Gray, T.G., Slessor, K.N., Shepherd, R.F., Grant, G.G., and Manville, J.F. 1984. European pine shoot moth, Rhyacionia buoliana (Lepidoptera: Tortricidae): identification of additional pheromone components resulting in an improved lure. The Canadian Entomologist, 116: 15251532.CrossRefGoogle Scholar
Gries, G., Gries, R., Khaskin, G., Slessor, K.N., Grant, G.G., Liška, J., and Kapitola, P. 1996. Specificity of nun and gypsy moth sexual communication through multiple component pheromone blends. Naturwissenschaften, 83: 382385.CrossRefGoogle Scholar
Gries, G., Gries, R., and Schaefer, P.W. 1997. Pheromone blend attracts nun moth, Lymantria monacha (L.) (Lepidoptera: Lymantriidae) in Japan. The Canadian Entomologist, 129: 11771178.CrossRefGoogle Scholar
Gries, G., Gries, R., Schaefer, P.W., Gotoh, T., and Higashiura, Y. 1999 a. Sex pheromone components of pink gypsy moth, Lymantria mathura. Naturwissenschaften, 86: 235238.CrossRefGoogle Scholar
Gries, G., Schaefer, P.W., Khaskin, G., Hahn, R., Gries, R., and Chao, J.-T. 1999 b. Sex pheromone components of Casuarina moth, Lymantria xylina. Journal of Chemical Ecology, 25: 25352545.CrossRefGoogle Scholar
Gries, G., Schaefer, P.W., Gries, R., Liška, J., and Gotoh, T. 2001. Reproductive character displacement in Lymantria monacha from northern Japan? Journal of Chemical Ecology, 27: 11631176.CrossRefGoogle ScholarPubMed
Gries, G., Schaefer, P.W., Gries, R., Fan, Y.-B., Higashiura, Y., and Tanaka, B. 2002. 2-Methyl-(Z)-7-octadecene: sex pheromone of allopatric Lymantria lucescens and L. serva. Journal of Chemical Ecology, 28: 469478.CrossRefGoogle ScholarPubMed
Gries, R., Khaskin, G., Gotoh, T., Schaefer, P.W., Doi, N., and Gries, G. 2005. 2-Methyl-(Z,E)-7,9-octadecadiene: sex pheromone of Lymantria bantaizana. Journal of Chemical Ecology, 31: 879891.CrossRefGoogle Scholar
Gries, R., Schaefer, P.W., Nakamura, K., and Gries, G. 2009. Lymantria dispar sex pheromone is a behavioral antagonist to pheromonal attraction of male L. mathura. The Canadian Entomologist, 141: 5355.CrossRefGoogle Scholar
Kim, K.C., and McPheron, B.A. 1993. Insect pests and evolution. In Evolution of insect pests: patterns of variation. Edited by Kim, K.C. and McPheron, B.A.. John Wiley & Sons, New York. pp. 325.Google Scholar
Klimetzek, D., Loskant, G., Vité, J.P., and Mori, K. 1976. Disparlure: differences in pheromone perception between gypsy and nun moth. Naturwissenschaften, 65: 581582.CrossRefGoogle Scholar
Miller, J.R., Mori, K., and Roelofs, W.L. 1977. Gypsy moth field trapping and electroantennogram studies with pheromone enantiomers. Journal of Insect Physiology, 23: 14471454.CrossRefGoogle Scholar
Niemelä, P., and Mattson, W.J. 1996. Invasion of North American forests by European phytophagous insects. Bioscience, 46: 741753.Google Scholar
Plimmer, J.R., Schwalbe, C.P., Paszek, E.C., Bierl, B.A., Webb, R.E., Marumo, S., and Iwaki, S. 1977. Contrasting effects of (+)- and (-)-enantiomers of disparlure for trapping native populations of the gypsy moth in Massachusetts. Environmental Entomology, 6: 618622.CrossRefGoogle Scholar
Pogue, M.G., and Schaefer, P.W. 2007. A review of selected species of Lymantria (Hübner [1819]) (Lepidoptera: Noctuidae: Lymantriinae) from subtropical and temperate regions of Asia including the description of three new species, some potentially invasive to North America. Publication FHTET-2006–2007. United States Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, Fort Collins, Colorado.Google Scholar
Rohig, E., and Ulrich, E. (Editors). 1991. Ecosystems of the world. Vol. 7. Temperate deciduous forests. Elsevier, New York.Google Scholar
SAS Institute Inc. 1988. SAS/STAT™ user's guide. Release 6.03 ed. SAS institute Inc., Cary, North Carolina.Google Scholar
Schaefer, P.W., Gries, G., Gries, R., and Holden, D. 1999. Pheromone components and diel periodicity of pheromonal communication in Lymantria fumida. Journal of Chemical Ecology, 25: 23052312.CrossRefGoogle Scholar
Stoyenoff, J.L., Witter, J.A., and Montgomery, M.E. 1994. Gypsy moth (Lepidoptera: Lymantriidae) performance in relation to egg hatch and feeding initiation times. Environmental Entomology, 23: 14501458.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar